期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于VMD和改进多分类马田系统的滚动轴承故障智能诊断
被引量:
11
1
作者
詹君
程龙生
彭宅铭
《振动与冲击》
EI
CSCD
北大核心
2020年第2期32-39,共8页
为了有效提取滚动轴承的故障信号,选择合适的智能分类器识别故障状态,提出基于变分模态分解及多重马氏距离法的多分类马田系统的故障智能诊断系统。通过变分模态分解将振动信号分解为多个本征模函数并提取相关特征;并采用了多重马氏距...
为了有效提取滚动轴承的故障信号,选择合适的智能分类器识别故障状态,提出基于变分模态分解及多重马氏距离法的多分类马田系统的故障智能诊断系统。通过变分模态分解将振动信号分解为多个本征模函数并提取相关特征;并采用了多重马氏距离法的马田系统,以特征子集代替特征参与分类器的构建,以解决特征参数众多的问题;通过正交表和信噪比,筛选出各状态的敏感模态分量,并提出多分类马田系统,用于多类故障智能识别;将其应用于滚动轴承故障数据中,验证算法的有效性,并与其他算法对比分析。结果表明,基于变分模态分解及改进的多分类马田系统算法能简化诊断系统、训练耗时少,识别准确率高,是一种更为有效的故障智能诊断方法。
展开更多
关键词
滚动轴承
智能诊断
变分模态分解(VMD)
多重
马
氏
距离
(
mmd
)
多分类
马
田系统(MMTS)
下载PDF
职称材料
题名
基于VMD和改进多分类马田系统的滚动轴承故障智能诊断
被引量:
11
1
作者
詹君
程龙生
彭宅铭
机构
南京理工大学经济管理学院
出处
《振动与冲击》
EI
CSCD
北大核心
2020年第2期32-39,共8页
基金
国家自然科学基金(71271114)
文摘
为了有效提取滚动轴承的故障信号,选择合适的智能分类器识别故障状态,提出基于变分模态分解及多重马氏距离法的多分类马田系统的故障智能诊断系统。通过变分模态分解将振动信号分解为多个本征模函数并提取相关特征;并采用了多重马氏距离法的马田系统,以特征子集代替特征参与分类器的构建,以解决特征参数众多的问题;通过正交表和信噪比,筛选出各状态的敏感模态分量,并提出多分类马田系统,用于多类故障智能识别;将其应用于滚动轴承故障数据中,验证算法的有效性,并与其他算法对比分析。结果表明,基于变分模态分解及改进的多分类马田系统算法能简化诊断系统、训练耗时少,识别准确率高,是一种更为有效的故障智能诊断方法。
关键词
滚动轴承
智能诊断
变分模态分解(VMD)
多重
马
氏
距离
(
mmd
)
多分类
马
田系统(MMTS)
Keywords
rolling bearing
intelligent diagnosis
variational mode decomposition(VMD)
multiple mahalanobis distance(
mmd
)
multi-classification Mahalanobis Taguchi system(MMTS)
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于VMD和改进多分类马田系统的滚动轴承故障智能诊断
詹君
程龙生
彭宅铭
《振动与冲击》
EI
CSCD
北大核心
2020
11
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部