We present a theoretical scheme for perfect teleportation of an unknown multipartite two-level state by a single EPR (Einstein-Podolsky-Rosen) pair, and then generalize it to multilevel, i.e., an N-quNit state can b...We present a theoretical scheme for perfect teleportation of an unknown multipartite two-level state by a single EPR (Einstein-Podolsky-Rosen) pair, and then generalize it to multilevel, i.e., an N-quNit state can be teleported by a single quNit entangled pair, with additional local unitary operations. The feature of the scheme is that teleporting a multipartite state with a reduced amount of entanglement costs less classical bits.展开更多
In this paper, we propose a protocol to deterministically teleport an unknown mixed state of qubit by utilizing a maximally bipartite entangled state of qubits as quantum channel. Ira non-maximally entangled bipartite...In this paper, we propose a protocol to deterministically teleport an unknown mixed state of qubit by utilizing a maximally bipartite entangled state of qubits as quantum channel. Ira non-maximally entangled bipartite pure state is employed as quantum channel, the unknown mixed quantum state of qubit can be teleported with 1 -√ 1- C^2 probability, where C is the concurrence of the quantum channel. The protocol can also be generalized to teleport a mixed state of qudit or a multipartite mixed state. More important purpose is that, on the basis of the protocol, the teleportation of an arbitrary multipartite (pure or mixed) quantum state can be decomposed into the teleportation of each subsystem by employing separate entangled states as quantum channels. In the case of deterministic teleportation, Bob only needs to perform unitary transformations on his single particles in order to recover the initial teleported multipartite quantum state.展开更多
Two kinds of -particle d-dimensional Schmidt-form entangled state teleportation protocols are presented. In the first protocol, the teleportation is achieved by -dimensional Bell-basis measurements, while in the secon...Two kinds of -particle d-dimensional Schmidt-form entangled state teleportation protocols are presented. In the first protocol, the teleportation is achieved by -dimensional Bell-basis measurements, while in the second protocol it is realized by -dimensional GHZ-basis measurement.展开更多
Resonance-enhanced multiphoton ionization of the titanium atoms has been investigated in the 293 321 nm wavelength. We couple a laser-ablated metal target into a molecular beam to produce free atoms. Ions produced fro...Resonance-enhanced multiphoton ionization of the titanium atoms has been investigated in the 293 321 nm wavelength. We couple a laser-ablated metal target into a molecular beam to produce free atoms. Ions produced from photoionization of the neutral atoms are monitored by a home-built time-of-flight mass spectrometer. Photoionization cross sections of the excited states of Ti I were deduced from the dependence of the ion signal intensity on the laser intensity for photon energies close to the ionization threshold. The values obtained range from 0.2 Mb to 6.0 Mb. No significant isotope-dependence was found from measurements of the photoionization cross sections of ^46Ti, ^47Ti, and ^48Ti.展开更多
We propose to use a set of averaged entropies, the multiple entropy measures (MEMS), to partiallyquantify quantum entanglement of multipartite quantum state.The MEMS is vector-like with m = [N/2] components:[S_1, S_2,...We propose to use a set of averaged entropies, the multiple entropy measures (MEMS), to partiallyquantify quantum entanglement of multipartite quantum state.The MEMS is vector-like with m = [N/2] components:[S_1, S_2,..., S_m], and the i-th component S_i is the geometric mean of i-qubits partial entropy of the system.The S_imeasures how strong an arbitrary i qubits from the system are correlated with the rest of the system.It satisfies theconditions for a good entanglement measure.We have analyzed the entanglement properties of the GHZ-state, theW-states, and cluster-states under MEMS.展开更多
A scheme of teleporting a multi-particle state via W state is presented. The W class states serve as quantum channels. After the sender operates both Von Neumann measurements and Bell-state measurements and then infor...A scheme of teleporting a multi-particle state via W state is presented. The W class states serve as quantum channels. After the sender operates both Von Neumann measurements and Bell-state measurements and then inform the receiver her results, the receiver can reconstruct the original state by corresponding unitary transformation. The probability of successful teleportation is also obtained. Special example of four-particle state is discussed in detail.展开更多
The quantum state transmission through the medium of high-dimensional many-particle system (boson or spinless fermion) is generally studied with a symmetry analysis. We discover that, if the spectrum of a Hamiltonia...The quantum state transmission through the medium of high-dimensional many-particle system (boson or spinless fermion) is generally studied with a symmetry analysis. We discover that, if the spectrum of a Hamiltonian matches the symmetry of a fermion or boson system in a certain fashion, a perfect quantum state transfer can be implemented without any operation on the medium with pre-engineered nearest neighbor (NN). We also study a simple but realistic near half-filled tight-bindlng fermion system wlth uniform NN hopping integral. We show that an arbitrary many-particle state near the fermi surface can be perfectly transferred to its translational counterpart.展开更多
We present an (n, n) threshold quantum secret sharing scheme of secure direct communication using Greenberger-Horne-Zeilinger state and teleportation. After ensuring the security of the quantum channel, the sender e...We present an (n, n) threshold quantum secret sharing scheme of secure direct communication using Greenberger-Horne-Zeilinger state and teleportation. After ensuring the security of the quantum channel, the sender encodes the secret message directly on a sequence of particle states and transmits it to the receivers by teleportation. The receivers can recover the secret message by combining their measurement results with the sender's result. Ira perfect quantum channel is used, our scheme is completely secure because the transmitting particle sequence does not carry the secret message. We also show our scheme is secure for noise quantum channel.展开更多
We propose a quantum secure communication protocol by using three-particle GHZ states. In this protocol, we utilize the ideas of the rearranging orders and the sequence transmission. The sender of messages, Alice, fir...We propose a quantum secure communication protocol by using three-particle GHZ states. In this protocol, we utilize the ideas of the rearranging orders and the sequence transmission. The sender of messages, Alice, first disturbs the particle orders in an initial sequence, and then sends the sequence of the disturbed orders to the receiver of messages, Bob. Under Alice's introduction, Bob rearranges the sequence back to the initial sequence. By making a GHZ state measurement on each of the three particles in turn, Bob can attain Alice's secret messages. In addition, we still calculate the efficiency of our three-particle GHZ protocol and generalize it to the case using multi-particle GHZ state.展开更多
The equivalence of multipartite quantum mixed states under local unitary transformations is studied. A criterion for the equivalence of non-degenerate mixed multipartite quantum states under local unitary transformati...The equivalence of multipartite quantum mixed states under local unitary transformations is studied. A criterion for the equivalence of non-degenerate mixed multipartite quantum states under local unitary transformations is presented.展开更多
The general scheme for teleportation of a multi-particle d-level quantumstate is presented when m pairs of partially entangled particles are utilized as quantum channels.The probabilistic teleportation can be achieved...The general scheme for teleportation of a multi-particle d-level quantumstate is presented when m pairs of partially entangled particles are utilized as quantum channels.The probabilistic teleportation can be achieved with a successful probability of Π from N=0 to d-1of (C_0~N)~2/d~M, which is determined by the smallest coefficients of each entangled channels.展开更多
Using the technique of integration within an ordered product of operators and the intermediate coordinatemomentum representation in quantum optics, as well as the excited squeezed state we derive a new form of Legendr...Using the technique of integration within an ordered product of operators and the intermediate coordinatemomentum representation in quantum optics, as well as the excited squeezed state we derive a new form of Legendre polynomials.展开更多
We propose a simple scheme to not only generate GHZ states and W states of the multiparticle but also form a new category of multiparticle entangled states by letting the A-type three-level atoms simultaneously intera...We propose a simple scheme to not only generate GHZ states and W states of the multiparticle but also form a new category of multiparticle entangled states by letting the A-type three-level atoms simultaneously interacting with a coherent cavity field followed by the selective measurements on the cavity mode. We investigate the influence of the cavity dissipation on the generated entangled state and discuss the experimental feasibility of our scheme. It is shown that the intensity of the coherent cavity field plays an instructive role in contribution to state preparation process while the cavity decay and the detuning between the atoms and cavity mode result in the deterioration of the generated entangled state.展开更多
A method is presented for generating highly squeezed states of a cavity field via the atom-cavity field interaction of the Raman type. In the scheme a sequence of three-level -type atoms interacts with a cavity field,...A method is presented for generating highly squeezed states of a cavity field via the atom-cavity field interaction of the Raman type. In the scheme a sequence of three-level -type atoms interacts with a cavity field, displaced by a classical source, in a Raman manner. Then the atomic states are measured. By this way the cavity field may collapse onto a superposition of several coherent states, which exhibits strong squeezing. The scheme can also be used to prepare superpositions of many two-mode coherent states for two cavity fields. The coherent states in each mode are on a straight line. This is the first way for preparing multi-component entangled coherent states of this type in cavity QED.展开更多
By means of the invariance of Weyl ordering under similar transformations we derive the explicit form of the generalized multimode squeezed states. Moreover, the completeness relation and the squeezing properties of t...By means of the invariance of Weyl ordering under similar transformations we derive the explicit form of the generalized multimode squeezed states. Moreover, the completeness relation and the squeezing properties of the generalized multimode squeezed states are discussed.展开更多
We propose a scheme for teleportation of four-level atomic states in thermal cavities. The scheme does not involve the generalized Bell-state or generalized GHZ-state measurement, which is difficult in practice. Anoth...We propose a scheme for teleportation of four-level atomic states in thermal cavities. The scheme does not involve the generalized Bell-state or generalized GHZ-state measurement, which is difficult in practice. Another feature of the scheme is that it does not require individual addressing of atoms in cavity and is insensitive to both cavity decay and thermal field, which is of importance in point of experiment.展开更多
We calculate Wigner function, tomogram of the pair coherent state by using its Sehmidt decomposition in the coherent state representation. It turns out that the Wigner function can be seen as the quantum entanglement ...We calculate Wigner function, tomogram of the pair coherent state by using its Sehmidt decomposition in the coherent state representation. It turns out that the Wigner function can be seen as the quantum entanglement (QE) between two two-variable Hermite polynomials (TVHP) and the tomogram is further simplified as QE of two single-variable Hermite polynomials. The Husimi function of pair coherent state is also calculated.展开更多
The multipartite entanglement transfer from continuous variable system to spin qubits is investigated. We select multi-mode coherent field as continuous variable field. It is found that the qubits can not gain tripart...The multipartite entanglement transfer from continuous variable system to spin qubits is investigated. We select multi-mode coherent field as continuous variable field. It is found that the qubits can not gain tripartite entanglement for states of close to GHZ state from the multi-mode coherent field. Moreover, the ability of the qubits gain the tripartite entanglement for states close to W state and bipartite entanglement from the continuous variable system is depended on the phase of multi-mode coherent field.展开更多
In this paper we propose a scheme for transferring quantum states and preparing quantum networks. Compared with the previous schemes, this scheme is more efficient, since three or four-dimensional quantum states can b...In this paper we propose a scheme for transferring quantum states and preparing quantum networks. Compared with the previous schemes, this scheme is more efficient, since three or four-dimensional quantum states can be transferred with a single step and information interchange of three-dimensional quantum states can be realized, which is a significant improvement. It is based on the resonant interaction of a three-mode cavity field with an atom. As a consequence, the interaction time is shortened greatly. Furthermore, we give some discussions about the feasibility of the scheme.展开更多
基金The project supported by the Fund from Hunan University of Science and Engineering
文摘We present a theoretical scheme for perfect teleportation of an unknown multipartite two-level state by a single EPR (Einstein-Podolsky-Rosen) pair, and then generalize it to multilevel, i.e., an N-quNit state can be teleported by a single quNit entangled pair, with additional local unitary operations. The feature of the scheme is that teleporting a multipartite state with a reduced amount of entanglement costs less classical bits.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10575017 and 60472017
文摘In this paper, we propose a protocol to deterministically teleport an unknown mixed state of qubit by utilizing a maximally bipartite entangled state of qubits as quantum channel. Ira non-maximally entangled bipartite pure state is employed as quantum channel, the unknown mixed quantum state of qubit can be teleported with 1 -√ 1- C^2 probability, where C is the concurrence of the quantum channel. The protocol can also be generalized to teleport a mixed state of qudit or a multipartite mixed state. More important purpose is that, on the basis of the protocol, the teleportation of an arbitrary multipartite (pure or mixed) quantum state can be decomposed into the teleportation of each subsystem by employing separate entangled states as quantum channels. In the case of deterministic teleportation, Bob only needs to perform unitary transformations on his single particles in order to recover the initial teleported multipartite quantum state.
文摘Two kinds of -particle d-dimensional Schmidt-form entangled state teleportation protocols are presented. In the first protocol, the teleportation is achieved by -dimensional Bell-basis measurements, while in the second protocol it is realized by -dimensional GHZ-basis measurement.
基金V. ACKNOWLEDGMENTS This work is supported by the National Natural Science Foundation of China (No.10674002 and No.20973001) and the Science Foundation of Anhui Education Committee (No.ZD2007001-1).
文摘Resonance-enhanced multiphoton ionization of the titanium atoms has been investigated in the 293 321 nm wavelength. We couple a laser-ablated metal target into a molecular beam to produce free atoms. Ions produced from photoionization of the neutral atoms are monitored by a home-built time-of-flight mass spectrometer. Photoionization cross sections of the excited states of Ti I were deduced from the dependence of the ion signal intensity on the laser intensity for photon energies close to the ionization threshold. The values obtained range from 0.2 Mb to 6.0 Mb. No significant isotope-dependence was found from measurements of the photoionization cross sections of ^46Ti, ^47Ti, and ^48Ti.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10775076,10874098 (GLL)the 973 Program 2006CB921106 (XZ)+1 种基金 the SRFDP Program of Education Ministry of China under Gtant No.20060003048 the Fundamental Research Funds for the Central Universities,DC10040119 (DL)
文摘We propose to use a set of averaged entropies, the multiple entropy measures (MEMS), to partiallyquantify quantum entanglement of multipartite quantum state.The MEMS is vector-like with m = [N/2] components:[S_1, S_2,..., S_m], and the i-th component S_i is the geometric mean of i-qubits partial entropy of the system.The S_imeasures how strong an arbitrary i qubits from the system are correlated with the rest of the system.It satisfies theconditions for a good entanglement measure.We have analyzed the entanglement properties of the GHZ-state, theW-states, and cluster-states under MEMS.
基金The project supported by Natural Science Foundation of Anhui Province of China under Grant No. 03042401, the Key Program of the Education Department of Anhui Province under Grant Nos. 2002kj029zd and 2006kj070A
文摘A scheme of teleporting a multi-particle state via W state is presented. The W class states serve as quantum channels. After the sender operates both Von Neumann measurements and Bell-state measurements and then inform the receiver her results, the receiver can reconstruct the original state by corresponding unitary transformation. The probability of successful teleportation is also obtained. Special example of four-particle state is discussed in detail.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 90203018, 10474104, and 10447133, and the Knowledge Innovation Program (KIP) of the Chinese Academy of Sciences, the National Fundamental Research Program of China under Grant No. 2001CB309310
文摘The quantum state transmission through the medium of high-dimensional many-particle system (boson or spinless fermion) is generally studied with a symmetry analysis. We discover that, if the spectrum of a Hamiltonian matches the symmetry of a fermion or boson system in a certain fashion, a perfect quantum state transfer can be implemented without any operation on the medium with pre-engineered nearest neighbor (NN). We also study a simple but realistic near half-filled tight-bindlng fermion system wlth uniform NN hopping integral. We show that an arbitrary many-particle state near the fermi surface can be perfectly transferred to its translational counterpart.
基金The project supported by National Natural Science Foundation of China under Grant No. 60472032 We would like to express our thanks to the anonymous referee for his/her constructive remarks and suggestions for improving this paper.
文摘We present an (n, n) threshold quantum secret sharing scheme of secure direct communication using Greenberger-Horne-Zeilinger state and teleportation. After ensuring the security of the quantum channel, the sender encodes the secret message directly on a sequence of particle states and transmits it to the receivers by teleportation. The receivers can recover the secret message by combining their measurement results with the sender's result. Ira perfect quantum channel is used, our scheme is completely secure because the transmitting particle sequence does not carry the secret message. We also show our scheme is secure for noise quantum channel.
文摘We propose a quantum secure communication protocol by using three-particle GHZ states. In this protocol, we utilize the ideas of the rearranging orders and the sequence transmission. The sender of messages, Alice, first disturbs the particle orders in an initial sequence, and then sends the sequence of the disturbed orders to the receiver of messages, Bob. Under Alice's introduction, Bob rearranges the sequence back to the initial sequence. By making a GHZ state measurement on each of the three particles in turn, Bob can attain Alice's secret messages. In addition, we still calculate the efficiency of our three-particle GHZ protocol and generalize it to the case using multi-particle GHZ state.
基金The project supported by the China-Germany Cooperation Project under Grant No. 446 CHV 113/231, "Quantum information and related mathematical problems" and National Natural Science Foundation of China under Grant Nos. 10375038 and 10271081
文摘The equivalence of multipartite quantum mixed states under local unitary transformations is studied. A criterion for the equivalence of non-degenerate mixed multipartite quantum states under local unitary transformations is presented.
文摘The general scheme for teleportation of a multi-particle d-level quantumstate is presented when m pairs of partially entangled particles are utilized as quantum channels.The probabilistic teleportation can be achieved with a successful probability of Π from N=0 to d-1of (C_0~N)~2/d~M, which is determined by the smallest coefficients of each entangled channels.
文摘Using the technique of integration within an ordered product of operators and the intermediate coordinatemomentum representation in quantum optics, as well as the excited squeezed state we derive a new form of Legendre polynomials.
基金Supported by the Natural Science Foundation of Hunan Province under Grant No.06jj50014Key Project Foundation of the Education Commission of Hunan Province under Grant No.06A055the Young Core Teachers Foundation of Hunan Provincial Education Department
文摘We propose a simple scheme to not only generate GHZ states and W states of the multiparticle but also form a new category of multiparticle entangled states by letting the A-type three-level atoms simultaneously interacting with a coherent cavity field followed by the selective measurements on the cavity mode. We investigate the influence of the cavity dissipation on the generated entangled state and discuss the experimental feasibility of our scheme. It is shown that the intensity of the coherent cavity field plays an instructive role in contribution to state preparation process while the cavity decay and the detuning between the atoms and cavity mode result in the deterioration of the generated entangled state.
文摘A method is presented for generating highly squeezed states of a cavity field via the atom-cavity field interaction of the Raman type. In the scheme a sequence of three-level -type atoms interacts with a cavity field, displaced by a classical source, in a Raman manner. Then the atomic states are measured. By this way the cavity field may collapse onto a superposition of several coherent states, which exhibits strong squeezing. The scheme can also be used to prepare superpositions of many two-mode coherent states for two cavity fields. The coherent states in each mode are on a straight line. This is the first way for preparing multi-component entangled coherent states of this type in cavity QED.
文摘By means of the invariance of Weyl ordering under similar transformations we derive the explicit form of the generalized multimode squeezed states. Moreover, the completeness relation and the squeezing properties of the generalized multimode squeezed states are discussed.
基金The project supported by the Scientific Research Fund of Education Department of Hunan Province of China under Grant No. 06C354, the Natural Science Foundation of Hunan Province of China under Grant No. 06JJ50015
文摘We propose a scheme for teleportation of four-level atomic states in thermal cavities. The scheme does not involve the generalized Bell-state or generalized GHZ-state measurement, which is difficult in practice. Another feature of the scheme is that it does not require individual addressing of atoms in cavity and is insensitive to both cavity decay and thermal field, which is of importance in point of experiment.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10775097 and 10874174the Research Foundation of the Education Department of Jiangxi Province
文摘We calculate Wigner function, tomogram of the pair coherent state by using its Sehmidt decomposition in the coherent state representation. It turns out that the Wigner function can be seen as the quantum entanglement (QE) between two two-variable Hermite polynomials (TVHP) and the tomogram is further simplified as QE of two single-variable Hermite polynomials. The Husimi function of pair coherent state is also calculated.
基金Supported by the National Natural Science Foundation of China under Grant No.10774108
文摘The multipartite entanglement transfer from continuous variable system to spin qubits is investigated. We select multi-mode coherent field as continuous variable field. It is found that the qubits can not gain tripartite entanglement for states of close to GHZ state from the multi-mode coherent field. Moreover, the ability of the qubits gain the tripartite entanglement for states close to W state and bipartite entanglement from the continuous variable system is depended on the phase of multi-mode coherent field.
基金Supported by the National Natural Science Foundation of China under Grant No.10974028Fujian Provincial Natural Science Foundation of China under Grant No.2009J06002
文摘In this paper we propose a scheme for transferring quantum states and preparing quantum networks. Compared with the previous schemes, this scheme is more efficient, since three or four-dimensional quantum states can be transferred with a single step and information interchange of three-dimensional quantum states can be realized, which is a significant improvement. It is based on the resonant interaction of a three-mode cavity field with an atom. As a consequence, the interaction time is shortened greatly. Furthermore, we give some discussions about the feasibility of the scheme.