期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合属性偏好和多阶交互信息的可解释评分预测研究 被引量:1
1
作者 郑建兴 李沁文 +1 位作者 王素格 李德玉 《自动化学报》 EI CAS CSCD 北大核心 2024年第11期2231-2244,共14页
已有推荐系统主要基于用户-项目交互矩阵来学习用户和项目的向量表示,而当交互矩阵稀疏时,推荐系统的精度较低,推荐的结果缺乏可解释性.考虑到用户-项目交互行为中的评分标签信息,提出了一种融合属性偏好和多阶交互信息的可解释评分预... 已有推荐系统主要基于用户-项目交互矩阵来学习用户和项目的向量表示,而当交互矩阵稀疏时,推荐系统的精度较低,推荐的结果缺乏可解释性.考虑到用户-项目交互行为中的评分标签信息,提出了一种融合属性偏好和多阶交互信息的可解释评分预测方法,并根据属性偏好对推荐结果进行解释.首先,基于注意力机制分析了用户和项目属性信息与评分标签的关系,建模了节点的属性偏好特征表示;然后,聚合了用户-项目交互矩阵中节点自身、交互邻居和评分标签信息,通过图神经网络学习了节点的多阶交互行为特征表示;最后,融合了节点的属性偏好特征和交互行为特征,在异质类型信息空间下学习了用户和项目的语义特征表示,利用多层感知机实现了评分预测,并在MovieLens和Douban数据集上验证了方法的有效性.实验结果表明,所提方法在平均绝对误差(Mean absolute error,MAE)和均方根误差(Root mean square error,RMSE)指标上有效提高了推荐系统的精度,缓解了数据稀疏场景下推荐模型性能较低的问题,提升了推荐结果的可解释性. 展开更多
关键词 属性偏好 多阶交互信息 注意力机制 可解释推荐
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部