In this paper, we investigate two kinds of second-order consensus algorithms for multiple agents with coupling delay under general fixed directed information topology. Stability analysis is performed based on Lyapunov...In this paper, we investigate two kinds of second-order consensus algorithms for multiple agents with coupling delay under general fixed directed information topology. Stability analysis is performed based on Lyapunov- Krasovskii functional method. Delay-dependent asymptotical stability condition in terms of linear matrix inequalities (LMIs) is derived for the second-order consensus algorithm of delayed dynamical networks. Both delay-independent and delay-dependent asymptotical stability conditions in terms of LMIs are derived for the second-order consensus algorithm with information feedback.展开更多
In this paper, we propose a nonlinear virus dynamics model that describes the interac- tions of the virus, uninfected target cells, multiple stages of infected cells and B cells and includes multiple discrete delays. ...In this paper, we propose a nonlinear virus dynamics model that describes the interac- tions of the virus, uninfected target cells, multiple stages of infected cells and B cells and includes multiple discrete delays. We assume that the incidence rate of infection and removal rate of infected cells are given by general nonlinear functions. The model can be seen as a generalization of several humoral immunity viral infection model presented in the literature. We derive two threshold parameters and establish a set of conditions on the general functions which are sufficient to establish the existence and global stability of the three equilibria of the model. We study the globa! asymptotic stability of the equilibria by using Lyapunov method. We perform some numerical simulations for the model with specific forms of the general functions and show that the numerical results are consistent with the theoretical results.展开更多
文摘In this paper, we investigate two kinds of second-order consensus algorithms for multiple agents with coupling delay under general fixed directed information topology. Stability analysis is performed based on Lyapunov- Krasovskii functional method. Delay-dependent asymptotical stability condition in terms of linear matrix inequalities (LMIs) is derived for the second-order consensus algorithm of delayed dynamical networks. Both delay-independent and delay-dependent asymptotical stability conditions in terms of LMIs are derived for the second-order consensus algorithm with information feedback.
文摘In this paper, we propose a nonlinear virus dynamics model that describes the interac- tions of the virus, uninfected target cells, multiple stages of infected cells and B cells and includes multiple discrete delays. We assume that the incidence rate of infection and removal rate of infected cells are given by general nonlinear functions. The model can be seen as a generalization of several humoral immunity viral infection model presented in the literature. We derive two threshold parameters and establish a set of conditions on the general functions which are sufficient to establish the existence and global stability of the three equilibria of the model. We study the globa! asymptotic stability of the equilibria by using Lyapunov method. We perform some numerical simulations for the model with specific forms of the general functions and show that the numerical results are consistent with the theoretical results.