期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于AHMRRT的移动机器人路径规划算法 被引量:6
1
作者 阮晓钢 刘少达 朱晓庆 《北京工业大学学报》 CAS CSCD 北大核心 2022年第2期121-128,共8页
为解决单向快速探索随机树(rapid exploring random tree,RRT)算法路径规划效率低且易陷入局部极小点的问题,提出了一种自适应启发式多快速探索随机树(adaptive heuristic multiple rapid exploring random tree,AHMRRT)路径规划算法.... 为解决单向快速探索随机树(rapid exploring random tree,RRT)算法路径规划效率低且易陷入局部极小点的问题,提出了一种自适应启发式多快速探索随机树(adaptive heuristic multiple rapid exploring random tree,AHMRRT)路径规划算法.一方面,基于多随机树构建策略的AHMRRT算法可以在起始点、目标点、子目标点生成4棵随机树,同时进行扩展搜索,从而提高路径规划效率;另一方面,通过在单棵随机树生长过程中添加自适应启发式偏置因子,AHMRRT算法可以根据环境中障碍物的情况自适应地改变新节点的生成策略.探索自由空间时,该算法可以在偏置因子的作用下迅速向目标点扩展以提高搜索效率;探索多障碍物空间时,该算法将调用随机采样函数以防止落入局部最优.在仿真实验中,设计了4种环境下AHMRRT算法与随机概率目标快速探索随机树(probability goal RRT,PGRRT)、双向快速探索随机树(bidirectional RRT,BRRT)算法的对比实验,仿真实验结果证明了该算法的可行性和高效性. 展开更多
关键词 移动机器人 快速探索随机 路径规划 多随机树构建策略 自适应启发式偏置因子 局部最优
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部