期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
以多项式乘多项式为例的学情分析应用探究
1
作者 张琪 《数理化解题研究》 2020年第2期40-41,共2页
教学设计是开展初中数学教学活动的理论指导,其主要根据教学理论设计开展教学活动,对于分析初中数学学情具有极为重要的意义.学生因素是教学设计的核心和关键因素,也是决定教学活动进程的重要因素.本文以初中数学"多项式乘多项式&q... 教学设计是开展初中数学教学活动的理论指导,其主要根据教学理论设计开展教学活动,对于分析初中数学学情具有极为重要的意义.学生因素是教学设计的核心和关键因素,也是决定教学活动进程的重要因素.本文以初中数学"多项式乘多项式"为例,对初中数学学情进行分析. 展开更多
关键词 多项式乘多项式 初中数学 学情
下载PDF
Polynomial Root Finding on Frequency Estimation with Sub-Nyquist Temporal Sampling
2
作者 石海杰 桂志国 张权 《Journal of Measurement Science and Instrumentation》 CAS 2011年第4期349-352,共4页
This paper addresses an algebraic approach for wideband frequency estimation with sub-Nyquist temporal sampling. Firstly, an algorithm based on double polynomial root finding procedure to estimate aliasing frequencies... This paper addresses an algebraic approach for wideband frequency estimation with sub-Nyquist temporal sampling. Firstly, an algorithm based on double polynomial root finding procedure to estimate aliasing frequencies and joint aliasing frequencies-time delay phases in multi-signal situation is presentcd. Since the sum of time delay phases determined from the least squares estimation shows the characteristics of the corre- sponding parameters pairs, then the pairmatching method is conducted by combining it with estimated parameters mentioned above. Although the proposed method is computationally simpler than the conventional schemes, simulation results show that it can approach optimum estimation performance. 展开更多
关键词 wideband frequency estimation sub-nyquist sampling polynomial root finding pair matching
下载PDF
Some identities of Bell polynomials 被引量:1
3
作者 KIM Dae San KIM Taekyun 《Science China Mathematics》 SCIE CSCD 2015年第10期2095-2104,共10页
We investigate Bell polynomials, also called Touchard polynomials or exponential polynomials, by using and without using umbral calculus. We use three different formulas in order to express various known families of p... We investigate Bell polynomials, also called Touchard polynomials or exponential polynomials, by using and without using umbral calculus. We use three different formulas in order to express various known families of polynomials such as Bernoulli polynomials, poly-Bernoulli polynomials, Cauchy polynomials and falling factorials in terms of Bell polynomials and vice versa. In addition, we derive several properties of Bell polynomials along the way. 展开更多
关键词 Bell-polynomial umbral calculus poly-Bernoulli polynomial higher-order Bernoulli polynomial Cauchy polynomial
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部