期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
增量式软件设计方法的条件
1
作者 王向云 蔡开元 王三民 《计算机工程与应用》 CSCD 北大核心 2008年第9期10-12,60,共4页
增量式设计方法是软件开发中常用的一种设计方法,但是对其进行形式化研究的并不多。论文研究用多项式动态系统方法开发软件时是否可以用增量式设计方法。首先通过一个反例说明并不是在任何情况下都可以用增量式设计方法,然后通过定义软... 增量式设计方法是软件开发中常用的一种设计方法,但是对其进行形式化研究的并不多。论文研究用多项式动态系统方法开发软件时是否可以用增量式设计方法。首先通过一个反例说明并不是在任何情况下都可以用增量式设计方法,然后通过定义软件需求的继承性,得到增量式软件设计的一个充分条件:当已经设计的软件需求具有继承性时,可以对新的软件需求采用增量式设计。 展开更多
关键词 软件控制论 监控理论 多项式动态系统 增量式软件设计 继承性
下载PDF
Nonlinear System Identification Using Methods for Subspace
2
作者 Santos Demetrio Miranda Borjas, Claudio Garcia David Zavaleta Villanueva 《Journal of Mechanics Engineering and Automation》 2014年第11期873-877,共5页
The identification of Wiener systems has been an active research topic for years. A Wiener system is a series connection of a linear dynamic system followed by a static nonlinearity. The difficulty in obtaining a repr... The identification of Wiener systems has been an active research topic for years. A Wiener system is a series connection of a linear dynamic system followed by a static nonlinearity. The difficulty in obtaining a representation of the Wiener model is the need to estimate the nonlinear function from the input and output data, without the intermediate signal availability. This paper presents a methodology for the nonlinear system identification of a Wiener type model, using methods for subspaces and polynomials of Chebyshev. The subspace methods used are MOESP (multivariable output-error state space) and N4SID (numerical algorithms for subspace state space system identification). A simulated example is presented to compare the performance of these algorithms. 展开更多
关键词 System identification structure of wiener subspace identification
下载PDF
Analysis of some large-scale nonlinear stochastic dynamic systems with subspace-EPC method
3
作者 ER GuoKang IU VaiPan 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第9期1631-1637,共7页
The probabilistic solutions to some nonlinear stochastic dynamic (NSD) systems with various polynomial types of nonlinearities in displacements are analyzed with the subspace-exponential polynomial closure (subspace-E... The probabilistic solutions to some nonlinear stochastic dynamic (NSD) systems with various polynomial types of nonlinearities in displacements are analyzed with the subspace-exponential polynomial closure (subspace-EPC) method. The space of the state variables of the large-scale nonlinear stochastic dynamic system excited by Gaussian white noises is separated into two subspaces. Both sides of the Fokker-Planck-Kolmogorov (FPK) equation corresponding to the NSD system are then integrated over one of the subspaces. The FPK equation for the joint probability density function of the state variables in the other subspace is formulated. Therefore, the FPK equations in low dimensions are obtained from the original FPK equation in high dimensions and the FPK equations in low dimensions are solvable with the exponential polynomial closure method. Examples about multi-degree-offreedom NSD systems with various polynomial types of nonlinearities in displacements are given to show the effectiveness of the subspace-EPC method in these cases. 展开更多
关键词 nonlinear stochastic dynamic systems large-scale systems probability density function Fokker-Planck-Kolmogorov equation subspace-EPC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部