期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
H∞辨识的多项式插值算法及Worst-Case误差
1
作者 黄学俊 王书宁 戴建设 《华中理工大学学报》 CSCD 北大核心 1996年第12期78-81,共4页
就单输入、单输出、离散、时不变因果系统讨论了面向鲁棒控制的H∞系统辨识问题.首先提出了用线性规划检验先验假设和后验数据是否相容的判据,然后给出了基于线性规划的多项式插值算法,该算法计算量少、所得模型简单,最后估计了该... 就单输入、单输出、离散、时不变因果系统讨论了面向鲁棒控制的H∞系统辨识问题.首先提出了用线性规划检验先验假设和后验数据是否相容的判据,然后给出了基于线性规划的多项式插值算法,该算法计算量少、所得模型简单,最后估计了该算法的Worst-Case误差。 展开更多
关键词 鲁棒控制 多项式插算法 H∞辨识 W-C误差
下载PDF
C^1 C^2INTERPOLATION OF SCATTERED DATA POINTS 
2
作者 WANG JIAYE AND ZHANG CAIMING(Department of Computer Science,Shandong University Jinan 250100) 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1994年第1期1-9,共9页
In this paper an error in[4]is pointed out and a method for constructingsurface interpolating scattered data points is presented.The main feature of the methodin this paper is that the surface so constructed is polyno... In this paper an error in[4]is pointed out and a method for constructingsurface interpolating scattered data points is presented.The main feature of the methodin this paper is that the surface so constructed is polynomial,which makes the construction simple and the calculation easy. 展开更多
关键词 INTERPOLATION Scattered Data Points TRIANGLE POLYNOMIAL BarycentricCoordinate.
下载PDF
基于时间轴的舞台机械控制系统简介
3
作者 陈永周 马则 《演艺科技》 2020年第8期45-49,共5页
介绍基于时间轴的舞台机械控制系统的构成和应用,包括系统结构、操作软件、网络通信协议、现场总线协议、控制器算法以及应用方法等。
关键词 时间轴 舞台机械 控制系统 操作系统 多项式算法
下载PDF
An Improved Early Termination Sparse Interpolation Algorithm for Multivariate Polynomials 被引量:4
4
作者 HUANG Qiaolong 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2018年第2期539-551,共13页
This paper presents an improved early termination algorithm for sparse black box multivariate polynomials, which reduces the interpolation problem into several sub-interpolation problems with less variables and fewer ... This paper presents an improved early termination algorithm for sparse black box multivariate polynomials, which reduces the interpolation problem into several sub-interpolation problems with less variables and fewer terms. Actually, all interpolations are eventually reduced to the interpolation of a list of polynomials with less terms than that of the original polynomial. Extensive experiments show that the new algorithm is much faster than the original algorithm. 展开更多
关键词 Ben-Or and Tiwari's algorithm early termination algorithm recursive sparse interpolation
原文传递
On the Unique Minimal Monomial Basis of Birkhoff Interpolation Problem 被引量:2
5
作者 ZHENG Xiaopeng CHAI Junjie +1 位作者 SONG Mengci LEI Na 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2016年第3期825-841,共17页
This paper studies the minimal monomial basis of the n-variable Birkhoff interpolation problem. First, the authors give a fast B-Lex algorithm which has an explicit geometric interpretation to compute the minimal mono... This paper studies the minimal monomial basis of the n-variable Birkhoff interpolation problem. First, the authors give a fast B-Lex algorithm which has an explicit geometric interpretation to compute the minimal monomial interpolation basis under lexieographie order and the algorithm is in fact a generalization of lex game algorithm. In practice, people usually desire the lowest degree interpolation polynomial, so the interpolation problems need to be solved under, for example, graded monomial order instead of lexicographie order. However, there barely exist fast algorithms for the non- lexicographic order problem. Hence, the authors in addition provide a criterion to determine whether an n-variable Birkhoff interpolation problem has unique minimal monomial basis, which means it owns the same minimal monomial basis w.r.t, arbitrary monomial order. Thus, for problems in this case, the authors can easily get the minimal monomial basis with little computation cost w.r.t, arbitrary monomial order by using our fast B-Lex algorithm. 展开更多
关键词 Birkhoff interpolation minimal monomial basis unique minimal monomial basis
原文传递
Computing the Determinant of a Matrix with Polynomial Entries by Approximation
6
作者 QIN Xiaolin SUN Zhi +1 位作者 LENG Tuo FENG Yong 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2018年第2期508-526,共19页
Computing the determinant of a matrix with the univariate and multivariate polynomial entries arises frequently in the scientific computing and engineering fields. This paper proposes an effective algorithm to compute... Computing the determinant of a matrix with the univariate and multivariate polynomial entries arises frequently in the scientific computing and engineering fields. This paper proposes an effective algorithm to compute the determinant of a matrix with polynomial entries using hybrid symbolic and numerical computation. The algorithm relies on the Newton's interpolation method with error control for solving Vandermonde systems. The authors also present the degree matrix to estimate the degree of variables in a matrix with polynomial entries, and the degree homomorphism method for dimension reduction. Furthermore, the parallelization of the method arises naturally. 展开更多
关键词 Approximate interpolation dimension reduction error controllable algorithm symbolicdeterminant Vandermonde systems.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部