为了给高产栽培提供试验依据,以不同旱作类型的春小麦高产(≥350kg/667m^2,呼盟;≥200kg/667m^2,赤峰)为目标,通过四因素最优组合设计试验,以对春小麦生育影响较大的基本苗数、施磷量、施钾量、施氮量四项主要农艺栽培措施为决策变量,...为了给高产栽培提供试验依据,以不同旱作类型的春小麦高产(≥350kg/667m^2,呼盟;≥200kg/667m^2,赤峰)为目标,通过四因素最优组合设计试验,以对春小麦生育影响较大的基本苗数、施磷量、施钾量、施氮量四项主要农艺栽培措施为决策变量,以产量为目标函数,建立了内蒙古不同旱作区春小麦主要农艺栽培措施与产量关系的二次多项式回归数学模型,通过频数寻优,定量化提出了不同旱作地区春小麦实现高产的综合农艺栽培措施优化方案。即施磷量、施钾量、施氮量和基本苗在呼盟地区分别为4.02~4.70 kg P_2O_5/667m^2、3.26~4.39 kg K_2O/667m^2、3.66~4.80 kg N/667m^2和45.3×10~4~47.8×10~4株/667m^2;赤峰地区则分别为5.13~5.74 kg P_2O_5/667m^2、3.50~4.02 kg K_2O/667m^2、7.49~8.86 kg N/667m^2和3.06×10~4~32.2×10~4株/667m^2。展开更多
In the model of geometric programming, values of parameters cannot be gotten owing to data fluctuation and incompletion. But reasonable bounds of these parameters can be attained. This is to say, parameters of this mo...In the model of geometric programming, values of parameters cannot be gotten owing to data fluctuation and incompletion. But reasonable bounds of these parameters can be attained. This is to say, parameters of this model can be regarded as interval grey numbers. When the model contains grey numbers, it is hard for common programming method to solve them. By combining the common programming model with the grey system theory, and using some analysis strategies, a model of grey polynomial geometric programming, a model of θ positioned geometric programming and their quasi-optimum solution or optimum solution are put forward. At the same time, we also developed an algorithm for the problem. This approach brings a new way for the application research of geometric programming. An example at the end of this paper shows the rationality and feasibility of the algorithm.展开更多
文摘为了给高产栽培提供试验依据,以不同旱作类型的春小麦高产(≥350kg/667m^2,呼盟;≥200kg/667m^2,赤峰)为目标,通过四因素最优组合设计试验,以对春小麦生育影响较大的基本苗数、施磷量、施钾量、施氮量四项主要农艺栽培措施为决策变量,以产量为目标函数,建立了内蒙古不同旱作区春小麦主要农艺栽培措施与产量关系的二次多项式回归数学模型,通过频数寻优,定量化提出了不同旱作地区春小麦实现高产的综合农艺栽培措施优化方案。即施磷量、施钾量、施氮量和基本苗在呼盟地区分别为4.02~4.70 kg P_2O_5/667m^2、3.26~4.39 kg K_2O/667m^2、3.66~4.80 kg N/667m^2和45.3×10~4~47.8×10~4株/667m^2;赤峰地区则分别为5.13~5.74 kg P_2O_5/667m^2、3.50~4.02 kg K_2O/667m^2、7.49~8.86 kg N/667m^2和3.06×10~4~32.2×10~4株/667m^2。
基金Supported by the NSF Jiangsu Province(BK2003211)Supported by the NSF of Henan Province(2003120001)
文摘In the model of geometric programming, values of parameters cannot be gotten owing to data fluctuation and incompletion. But reasonable bounds of these parameters can be attained. This is to say, parameters of this model can be regarded as interval grey numbers. When the model contains grey numbers, it is hard for common programming method to solve them. By combining the common programming model with the grey system theory, and using some analysis strategies, a model of grey polynomial geometric programming, a model of θ positioned geometric programming and their quasi-optimum solution or optimum solution are put forward. At the same time, we also developed an algorithm for the problem. This approach brings a new way for the application research of geometric programming. An example at the end of this paper shows the rationality and feasibility of the algorithm.