The paper considers a scalar linear differential difference equation (LDDE) of mixed type x(t) = (a0 + a1t)X(t) + (b0 + b1t)x(t - 1) + (d0 + d1tx(t + 1) + f(t), t ∈ R, (*) where f(t) = ∑...The paper considers a scalar linear differential difference equation (LDDE) of mixed type x(t) = (a0 + a1t)X(t) + (b0 + b1t)x(t - 1) + (d0 + d1tx(t + 1) + f(t), t ∈ R, (*) where f(t) = ∑n=0^F fn^tn. This equation is investigated with the use of the method of polynomial quasisolutions based on the representation of an unknown function in the form of polynomial x(t) = ∑n=0^N xn^tn. As a result of substitution of this function into equation (*), there appears a residual △(t) = 0(t^N), for which an exact analytical representation has been obtained. In turn, this allows one to find the unknown coefficients xn and consequently the polynomial quasisolution x(t). Several examples are considered.展开更多
文摘The paper considers a scalar linear differential difference equation (LDDE) of mixed type x(t) = (a0 + a1t)X(t) + (b0 + b1t)x(t - 1) + (d0 + d1tx(t + 1) + f(t), t ∈ R, (*) where f(t) = ∑n=0^F fn^tn. This equation is investigated with the use of the method of polynomial quasisolutions based on the representation of an unknown function in the form of polynomial x(t) = ∑n=0^N xn^tn. As a result of substitution of this function into equation (*), there appears a residual △(t) = 0(t^N), for which an exact analytical representation has been obtained. In turn, this allows one to find the unknown coefficients xn and consequently the polynomial quasisolution x(t). Several examples are considered.