In this paper, we present a fast and fraction free procedure for computing the inertia of Bezout matrix and we can determine the numbers of different real roots and different pairs of conjugate complex roots of a pol...In this paper, we present a fast and fraction free procedure for computing the inertia of Bezout matrix and we can determine the numbers of different real roots and different pairs of conjugate complex roots of a polynomial equation with integer coefficients quickly based on this result.展开更多
Using a polynomial expansion method, the general exact solitary wave solution and singular one areconstructed for the non-linear KS equation. This approach is obviously applicable to a large variety of nonlinear evolu...Using a polynomial expansion method, the general exact solitary wave solution and singular one areconstructed for the non-linear KS equation. This approach is obviously applicable to a large variety of nonlinear evolution equation.展开更多
Finding all zeros of polynomial systems is very interesting and it is also useul for many applied science problems.In this paper,based on Wu's method,we give an algorithm to find all isolated zeros of polynomial s...Finding all zeros of polynomial systems is very interesting and it is also useul for many applied science problems.In this paper,based on Wu's method,we give an algorithm to find all isolated zeros of polynomial systems (or polynomial equations).By solving Lorenz equations,it is shown that our algo-rithm is efficient and powerful.展开更多
A new ring-shaped non-harmonic oscillator potential is proposed. The precise bound solution of Dirac equation with the potential is gained when the scalar potential is equal to the vector potential. The angular equati...A new ring-shaped non-harmonic oscillator potential is proposed. The precise bound solution of Dirac equation with the potential is gained when the scalar potential is equal to the vector potential. The angular equation and radial equation are obtained through the variable separation method. The results indicate that the normalized angle wave function can be expressed with the generalized associated-Legendre polynomial, and the normalized radial wave function can be expressed with confluent hypergeometric function. And then the precise energy spectrum equations are obtained. The ground state and several low excited states of the system are solved. And those results are compared with the non-relativistic effect energy level in Phys. Lett. A 340 (2005) 94. The positive energy states of system are discussed and the conclusions are made properly.展开更多
Let q be a power of a prime and φ be the Frobenius endomorphism on E(Fqk), then q = tφ - φ^2. Applying this equation, a new algorithm to compute rational point scalar multiplications on elliptic curves by finding...Let q be a power of a prime and φ be the Frobenius endomorphism on E(Fqk), then q = tφ - φ^2. Applying this equation, a new algorithm to compute rational point scalar multiplications on elliptic curves by finding a suitable small positive integer s such that q^s can be represented as some very sparse φ-polynomial is proposed. If a Normal Basis (NB) or Optimal Normal Basis (ONB) is applied and the precomputations are considered free, our algorithm will cost, on average, about 55% to 80% less than binary method, and about 42% to 74% less than φ-ary method. For some elliptic curves, our algorithm is also taster than Mǖller's algorithm. In addition, an effective algorithm is provided for finding such integer s.展开更多
This paper focuses on obtaining an asymptotic solution for coupled heat and mass transfer problem during the solidification of high water content materials. It is found that a complicated function involved in governin...This paper focuses on obtaining an asymptotic solution for coupled heat and mass transfer problem during the solidification of high water content materials. It is found that a complicated function involved in governing equations can be approached by Taylor polynomials unlimitedly, which leads to the simplification of governing equations. The unknown functions involved in governing equations can then be approximated by Chebyshev polynomials. The coefficients of Chebyshev polynomials are determined and an asymptotic solution is obtained. With the asymptotic solution, the dehydration and freezing fronts of materials are evaluated easily, and are consistent with numerical results obtained by using an explicit finite difference method.展开更多
Differential-difference equations are considered to be hybrid systems because the spatial variable n is discrete while the time t is usually kept continuous.Although a considerable amount of research has been carried ...Differential-difference equations are considered to be hybrid systems because the spatial variable n is discrete while the time t is usually kept continuous.Although a considerable amount of research has been carried out in the field of nonlinear differential-difference equations,the majority of the results deal with polynomial types.Limited research has been reported regarding such equations of rational type.In this paper we present an adaptation of the(G /G)-expansion method to solve nonlinear rational differential-difference equations.The procedure is demonstrated using two distinct equations.Our approach allows one to construct three types of exact traveling wave solutions(hyperbolic,trigonometric,and rational) by means of the simplified form of the auxiliary equation method with reduced parameters.Our analysis leads to analytic solutions in terms of topological solitons and singular periodic functions as well.展开更多
文摘In this paper, we present a fast and fraction free procedure for computing the inertia of Bezout matrix and we can determine the numbers of different real roots and different pairs of conjugate complex roots of a polynomial equation with integer coefficients quickly based on this result.
文摘Using a polynomial expansion method, the general exact solitary wave solution and singular one areconstructed for the non-linear KS equation. This approach is obviously applicable to a large variety of nonlinear evolution equation.
文摘Finding all zeros of polynomial systems is very interesting and it is also useul for many applied science problems.In this paper,based on Wu's method,we give an algorithm to find all isolated zeros of polynomial systems (or polynomial equations).By solving Lorenz equations,it is shown that our algo-rithm is efficient and powerful.
基金Supported by the National Natural Science Foundation of China under Grant No. 60806047the Basic Research of Chongqing Education Committee under Grant No. KJ060813
文摘A new ring-shaped non-harmonic oscillator potential is proposed. The precise bound solution of Dirac equation with the potential is gained when the scalar potential is equal to the vector potential. The angular equation and radial equation are obtained through the variable separation method. The results indicate that the normalized angle wave function can be expressed with the generalized associated-Legendre polynomial, and the normalized radial wave function can be expressed with confluent hypergeometric function. And then the precise energy spectrum equations are obtained. The ground state and several low excited states of the system are solved. And those results are compared with the non-relativistic effect energy level in Phys. Lett. A 340 (2005) 94. The positive energy states of system are discussed and the conclusions are made properly.
基金Supported by the National 973 High Technology Projects (No. G1998030420)
文摘Let q be a power of a prime and φ be the Frobenius endomorphism on E(Fqk), then q = tφ - φ^2. Applying this equation, a new algorithm to compute rational point scalar multiplications on elliptic curves by finding a suitable small positive integer s such that q^s can be represented as some very sparse φ-polynomial is proposed. If a Normal Basis (NB) or Optimal Normal Basis (ONB) is applied and the precomputations are considered free, our algorithm will cost, on average, about 55% to 80% less than binary method, and about 42% to 74% less than φ-ary method. For some elliptic curves, our algorithm is also taster than Mǖller's algorithm. In addition, an effective algorithm is provided for finding such integer s.
基金Supported by Major State Basic Research Development Program of China ("973" Program, No. 2007CB714001)
文摘This paper focuses on obtaining an asymptotic solution for coupled heat and mass transfer problem during the solidification of high water content materials. It is found that a complicated function involved in governing equations can be approached by Taylor polynomials unlimitedly, which leads to the simplification of governing equations. The unknown functions involved in governing equations can then be approximated by Chebyshev polynomials. The coefficients of Chebyshev polynomials are determined and an asymptotic solution is obtained. With the asymptotic solution, the dehydration and freezing fronts of materials are evaluated easily, and are consistent with numerical results obtained by using an explicit finite difference method.
文摘Differential-difference equations are considered to be hybrid systems because the spatial variable n is discrete while the time t is usually kept continuous.Although a considerable amount of research has been carried out in the field of nonlinear differential-difference equations,the majority of the results deal with polynomial types.Limited research has been reported regarding such equations of rational type.In this paper we present an adaptation of the(G /G)-expansion method to solve nonlinear rational differential-difference equations.The procedure is demonstrated using two distinct equations.Our approach allows one to construct three types of exact traveling wave solutions(hyperbolic,trigonometric,and rational) by means of the simplified form of the auxiliary equation method with reduced parameters.Our analysis leads to analytic solutions in terms of topological solitons and singular periodic functions as well.