期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于小波分析和多项式细分定位的超分辨率图像重建算法 被引量:5
1
作者 贺清碧 黄大荣 杨永琴 《计算机科学》 CSCD 北大核心 2016年第3期313-316,共4页
图像超分辨率重建是图像增强和图像复原研究中的一项重要课题,广泛应用于高清晰电视、医学成像和遥感成像等领域。在小波分析边缘检测的基础上,通过多项式细分算法定位亚像素边缘,将图像分为平滑区域、边缘区域和微细边缘区域。根据不... 图像超分辨率重建是图像增强和图像复原研究中的一项重要课题,广泛应用于高清晰电视、医学成像和遥感成像等领域。在小波分析边缘检测的基础上,通过多项式细分算法定位亚像素边缘,将图像分为平滑区域、边缘区域和微细边缘区域。根据不同的区域特性,采用不同的插值方式进行超分辨率图像重建。仿真结果显示所提算法重建的高分辨率图像边界部分清晰自然,其主观判断和客观评价结果明显好于传统重建算法,从而验证了本算法的可行性和有效性。 展开更多
关键词 小波分析 多项式细分 亚像素 超分辨率重建
下载PDF
基于小波分析的亚像素配准算法
2
作者 王森华 李建平 杨永琴 《计算机应用》 CSCD 北大核心 2009年第B06期213-215,共3页
在像素级配准的基础上,通过对多项式细分算法的改进,提出了一种基于小波分析的亚像素配准算法,并对配准算法的精度进行了分析研究。仿真结果表明,该算法效果良好,达到亚像素级精度。
关键词 小波分析 多项式细分 亚像素配准
下载PDF
A model for analyzing phenomena in multicellular organisms with multivariable polynomials: Polynomial life
3
作者 Hiroshi Yoshida 《International Journal of Biomathematics》 SCIE 2018年第1期175-184,共10页
Most of life maintains itself through turnover, namely cell proliferation, movement and elimination. Hydra's cells, for example, disappear continuously from the ends of tenta- cles, but these cells are replenished by... Most of life maintains itself through turnover, namely cell proliferation, movement and elimination. Hydra's cells, for example, disappear continuously from the ends of tenta- cles, but these cells are replenished by cell proliferation within the body. Inspired by such a biological fact, and together with various operations of polynomials, I here propose polynomial-life model toward analysis of some phenomena in multicellular organisms. Polynomial life consists of multicells that are expressed as multivariable polynomials. A cell is expressed as a term of polynomial, in which point (m, n) is described as a term zmy~ and the condition is described as its coefficient. Starting with a single term and following reductions by set of polynomials, I simulate the development from a cell to a multicell. In order to confirm uniqueness of the eventual multicell-pattern, GrSbner base can be used, which has been conventionally used to ensure uniqueness of normal form in the mathematical context. In this framework, I present various patterns through the polynomial-life model and discuss patterns maintained through turnover. Cell elimina- tion seems to play an important role in turnover, which may shed some light on cancer or regenerative medicine. 展开更多
关键词 Regeneration TURNOVER multivariable polynomials polynomial life.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部