隐私保护集合交集(private set intersection,PSI)计算属于安全多方计算领域的特定应用问题,不仅具有重要的理论意义也具有很强的应用背景,在大数据时代,对该问题的研究更是符合人们日益强烈的在享受各种服务的同时达到隐私保护的需求....隐私保护集合交集(private set intersection,PSI)计算属于安全多方计算领域的特定应用问题,不仅具有重要的理论意义也具有很强的应用背景,在大数据时代,对该问题的研究更是符合人们日益强烈的在享受各种服务的同时达到隐私保护的需求.对安全多方计算基础理论进行了简要介绍,并重点介绍了目前主流的安全多方计算框架下2类PSI研究技术:传统的基于公钥加密机制,混乱电路,不经意传输的PSI协议和新型的云辅助的PSI协议,并对各类协议的过程、适用性、复杂性进行简要分析总结.同时,也对隐私保护集合交集问题的应用场景进行详细说明,进一步体现对该问题的实际研究价值.随着对该问题的不断深入研究,目前已经设计了在半诚实模型下快速完成上亿元素规模的隐私集合求交集协议.展开更多
Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent s...Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent series.First,fingerprint orientation flow field was obtained,using the gradient of fingerprint image.With these gradients,fingerprint orientation tensor field was calculated.Then,candidate SPs were detected by the cross-correlation energy in multi-scale Gaussian space.The energy was calculated between fingerprint orientation tensor field and Laurent polynomial model.As a global descriptor,the Laurent polynomial coefficients were allowed for rotational invariance.Furthermore,a support vector machine(SVM)classifier was trained to remove spurious SPs,using cross-correlation coefficient as a feature vector.Finally,experiments were performed on Singular Point Detection Competition 2010(SPD2010)database.Compared to the winner algorithm of SPD2010 which has best accuracy of 31.90%,the accuracy of proposed algorithm is 45.34%.The results show that the proposed method outperforms the state-of-the-art detection algorithms by large margin,and the detection is invariant to rotational transformations.展开更多
In this paper an error in[4]is pointed out and a method for constructingsurface interpolating scattered data points is presented.The main feature of the methodin this paper is that the surface so constructed is polyno...In this paper an error in[4]is pointed out and a method for constructingsurface interpolating scattered data points is presented.The main feature of the methodin this paper is that the surface so constructed is polynomial,which makes the construction simple and the calculation easy.展开更多
Homogeneous matrices are widely used to represent geometric transformations in computer graphics, with interpo- lation between those matrices being of high interest for computer animation. Many approaches have been pr...Homogeneous matrices are widely used to represent geometric transformations in computer graphics, with interpo- lation between those matrices being of high interest for computer animation. Many approaches have been proposed to address this problem, including computing matrix curves from curves in Euclidean space by registration, representing one-parameter curves on manifold by rational representations, changing subdivisional methods generating curves in Euclidean space to corresponding methods working for matrix curve generation, and variational methods. In this paper, we propose a scheme to generate rational one-parameter matrix curves based on exponential map for interpolation, and demonstrate how to obtain higher smoothness from existing curves. We also give an iterative technique for rapid computing of these curves. We take the computation as solving an ordinary differential equation on manifold numerically by a generalized Euler method. Furthermore, we give this algorithm’s bound of the error and prove that the bound is proportional to the shift length when the shift length is sufficiently small. Compared to direct computation of the matrix functions, our Euler solution is faster.展开更多
In this paper, the author presents a class of stationary ternary 4-point approximating symmetrical subdivision algorithm that reproduces cubic polynomials. By these subdivision algorithms at each refinement step, new ...In this paper, the author presents a class of stationary ternary 4-point approximating symmetrical subdivision algorithm that reproduces cubic polynomials. By these subdivision algorithms at each refinement step, new insertion control points on a finer grid are computed by weighted sums of already existing control points. In the limit of the recursive process, data is defined on a dense set of point, The objective is to find an improved subdivision approximating algorithm which has a smaller support and a higher approximating order. The author chooses a ternary scheme because the best way to get a smaller support is to pass from the binary to ternary or complex algorithm and uses polynomial reproducing propriety to get higher approximation order. Using the cardinal Lagrange polynomials the author has proposed a 4-point approximating ternary subdivision algorithm and found that a higher regularity of limit function does not guarantee a higher approximating order. The proposed 4-point ternary approximation subdivision family algorithms with the mask a have the limit function in C2 and have approximation order 4. Also the author has demonstrated that in this class there is no algorithm whose limit function is in C3. It can be seen that this stationary ternary 4-point approximating symmetrical subdivision algorithm has a lower computational cost than the 6-point binary approximation subdivision algorithm for a greater range of points.展开更多
This paper presents an inequality, by use of which some results about the value distribution of f nf (k) are proved, where n and k are two positive integers.
This paper presents a basis for the space of hyperbolic polynomials Гm=span { 1, sht, cht, sh2t, ch2t shmt, chmt} on the interval [0,a] from an extended Tchebyshev system, which is analogous to the Bernstein basis fo...This paper presents a basis for the space of hyperbolic polynomials Гm=span { 1, sht, cht, sh2t, ch2t shmt, chmt} on the interval [0,a] from an extended Tchebyshev system, which is analogous to the Bernstein basis for the space of polynomial used as a kind of well-known tool for free-form curves and surfaces in Computer Aided Geometry Design. Then from this basis, we construct quasi Bézier curves and discuss some of their properties. At last, we give an example and extend the range of the parameter variable t to arbitrary close interval [r, s] (r〈s).展开更多
In this paper,a randomized Cayley-Hamilton theorem based method(abbreviated by RCH method) for computing the minimal polynomial of a polynomial matrix is presented.It determines the coefficient polynomials term by ter...In this paper,a randomized Cayley-Hamilton theorem based method(abbreviated by RCH method) for computing the minimal polynomial of a polynomial matrix is presented.It determines the coefficient polynomials term by term from lower to higher degree.By using a random vector and randomly shifting,it requires no condition on the input matrix and works with probability one.In the case that coefficients of entries of the given polynomial matrix are all integers and that the algorithm is performed in exact computation,by using the modular technique,a parallelized version of the RCH method is also given.Comparisons with other algorithms in both theoretical complexity analysis and computational tests are given to show its effectiveness.展开更多
An efficient algorithm is proposed for factoring polynomials over an algebraic extension field defined by a polynomial ring modulo a maximal ideal. If the maximal ideal is given by its CrSbner basis, no extra Grbbner ...An efficient algorithm is proposed for factoring polynomials over an algebraic extension field defined by a polynomial ring modulo a maximal ideal. If the maximal ideal is given by its CrSbner basis, no extra Grbbner basis computation is needed for factoring a polynomial over this extension field. Nothing more than linear algebraic technique is used to get a characteristic polynomial of a generic linear map. Then this polynomial is factorized over the ground field. From its factors, the factorization of the polynomial over the extension field is obtained. The algorithm has been implemented in Magma and computer experiments indicate that it is very efficient, particularly for complicated examples.展开更多
In 2002, Faugere presented the famous F5 algorithm for computing GrSbner basis where two cri- teria, syzygy criterion and rewritten criterion, were proposed to avoid redundant computations. He proved the correctness o...In 2002, Faugere presented the famous F5 algorithm for computing GrSbner basis where two cri- teria, syzygy criterion and rewritten criterion, were proposed to avoid redundant computations. He proved the correctness of the syzygy criterion, but the proof for the correctness of the rewritten criterion was left. Since then, F5 has been studied extensively. Some proofs for the correctness of F5 were proposed, but these proofs are valid only under some extra assumptions. In this paper, we give a proof for the correctness of F5B, an equivalent version of F5 in Buchberger's style. The proof is valid for both homogeneous and non-homogeneous polynomial systems. Since this proof does not depend on the computing order of the S-pairs, any strategy of selecting S-pairs could be used in F5B or F5. Furthermore, we propose a natural and non-incremental variant of F5 where two revised criteria can be used to remove almost all redundant S-pairs.展开更多
By catching the so-called strictly critical points,this paper presents an effective algorithm for computing the global infimum of a polynomial function.For a multivariate real polynomial f ,the algorithm in this paper...By catching the so-called strictly critical points,this paper presents an effective algorithm for computing the global infimum of a polynomial function.For a multivariate real polynomial f ,the algorithm in this paper is able to decide whether or not the global infimum of f is finite.In the case of f having a finite infimum,the global infimum of f can be accurately coded in the Interval Representation.Another usage of our algorithm to decide whether or not the infimum of f is attained when the global infimum of f is finite.In the design of our algorithm,Wu’s well-known method plays an important role.展开更多
This paper studies the minimal monomial basis of the n-variable Birkhoff interpolation problem. First, the authors give a fast B-Lex algorithm which has an explicit geometric interpretation to compute the minimal mono...This paper studies the minimal monomial basis of the n-variable Birkhoff interpolation problem. First, the authors give a fast B-Lex algorithm which has an explicit geometric interpretation to compute the minimal monomial interpolation basis under lexieographie order and the algorithm is in fact a generalization of lex game algorithm. In practice, people usually desire the lowest degree interpolation polynomial, so the interpolation problems need to be solved under, for example, graded monomial order instead of lexicographie order. However, there barely exist fast algorithms for the non- lexicographic order problem. Hence, the authors in addition provide a criterion to determine whether an n-variable Birkhoff interpolation problem has unique minimal monomial basis, which means it owns the same minimal monomial basis w.r.t, arbitrary monomial order. Thus, for problems in this case, the authors can easily get the minimal monomial basis with little computation cost w.r.t, arbitrary monomial order by using our fast B-Lex algorithm.展开更多
文摘隐私保护集合交集(private set intersection,PSI)计算属于安全多方计算领域的特定应用问题,不仅具有重要的理论意义也具有很强的应用背景,在大数据时代,对该问题的研究更是符合人们日益强烈的在享受各种服务的同时达到隐私保护的需求.对安全多方计算基础理论进行了简要介绍,并重点介绍了目前主流的安全多方计算框架下2类PSI研究技术:传统的基于公钥加密机制,混乱电路,不经意传输的PSI协议和新型的云辅助的PSI协议,并对各类协议的过程、适用性、复杂性进行简要分析总结.同时,也对隐私保护集合交集问题的应用场景进行详细说明,进一步体现对该问题的实际研究价值.随着对该问题的不断深入研究,目前已经设计了在半诚实模型下快速完成上亿元素规模的隐私集合求交集协议.
基金Project(11JJ3080)supported by Natural Science Foundation of Hunan Province,ChinaProject(11CY012)supported by Cultivation in Hunan Colleges and Universities,ChinaProject(ET51007)supported by Youth Talent in Hunan University,China
文摘Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent series.First,fingerprint orientation flow field was obtained,using the gradient of fingerprint image.With these gradients,fingerprint orientation tensor field was calculated.Then,candidate SPs were detected by the cross-correlation energy in multi-scale Gaussian space.The energy was calculated between fingerprint orientation tensor field and Laurent polynomial model.As a global descriptor,the Laurent polynomial coefficients were allowed for rotational invariance.Furthermore,a support vector machine(SVM)classifier was trained to remove spurious SPs,using cross-correlation coefficient as a feature vector.Finally,experiments were performed on Singular Point Detection Competition 2010(SPD2010)database.Compared to the winner algorithm of SPD2010 which has best accuracy of 31.90%,the accuracy of proposed algorithm is 45.34%.The results show that the proposed method outperforms the state-of-the-art detection algorithms by large margin,and the detection is invariant to rotational transformations.
文摘In this paper an error in[4]is pointed out and a method for constructingsurface interpolating scattered data points is presented.The main feature of the methodin this paper is that the surface so constructed is polynomial,which makes the construction simple and the calculation easy.
基金Project (No. 200038) partially supported by FANEDD, China
文摘Homogeneous matrices are widely used to represent geometric transformations in computer graphics, with interpo- lation between those matrices being of high interest for computer animation. Many approaches have been proposed to address this problem, including computing matrix curves from curves in Euclidean space by registration, representing one-parameter curves on manifold by rational representations, changing subdivisional methods generating curves in Euclidean space to corresponding methods working for matrix curve generation, and variational methods. In this paper, we propose a scheme to generate rational one-parameter matrix curves based on exponential map for interpolation, and demonstrate how to obtain higher smoothness from existing curves. We also give an iterative technique for rapid computing of these curves. We take the computation as solving an ordinary differential equation on manifold numerically by a generalized Euler method. Furthermore, we give this algorithm’s bound of the error and prove that the bound is proportional to the shift length when the shift length is sufficiently small. Compared to direct computation of the matrix functions, our Euler solution is faster.
文摘In this paper, the author presents a class of stationary ternary 4-point approximating symmetrical subdivision algorithm that reproduces cubic polynomials. By these subdivision algorithms at each refinement step, new insertion control points on a finer grid are computed by weighted sums of already existing control points. In the limit of the recursive process, data is defined on a dense set of point, The objective is to find an improved subdivision approximating algorithm which has a smaller support and a higher approximating order. The author chooses a ternary scheme because the best way to get a smaller support is to pass from the binary to ternary or complex algorithm and uses polynomial reproducing propriety to get higher approximation order. Using the cardinal Lagrange polynomials the author has proposed a 4-point approximating ternary subdivision algorithm and found that a higher regularity of limit function does not guarantee a higher approximating order. The proposed 4-point ternary approximation subdivision family algorithms with the mask a have the limit function in C2 and have approximation order 4. Also the author has demonstrated that in this class there is no algorithm whose limit function is in C3. It can be seen that this stationary ternary 4-point approximating symmetrical subdivision algorithm has a lower computational cost than the 6-point binary approximation subdivision algorithm for a greater range of points.
文摘This paper presents an inequality, by use of which some results about the value distribution of f nf (k) are proved, where n and k are two positive integers.
基金Project supported by the National Natural Science Foundation of China (No. 60473130) and the National Basic Research Program (973) of China (No. 2004CB318000)
文摘This paper presents a basis for the space of hyperbolic polynomials Гm=span { 1, sht, cht, sh2t, ch2t shmt, chmt} on the interval [0,a] from an extended Tchebyshev system, which is analogous to the Bernstein basis for the space of polynomial used as a kind of well-known tool for free-form curves and surfaces in Computer Aided Geometry Design. Then from this basis, we construct quasi Bézier curves and discuss some of their properties. At last, we give an example and extend the range of the parameter variable t to arbitrary close interval [r, s] (r〈s).
基金supported by the National Natural Science Foundation of China under Grant No.11171051the Major Research plan of the National Natural Science Foundation of China under Grant No.91230103the Fundamental Research Funds for the Central Universities under Grant No.DUT14RC(3)023
文摘In this paper,a randomized Cayley-Hamilton theorem based method(abbreviated by RCH method) for computing the minimal polynomial of a polynomial matrix is presented.It determines the coefficient polynomials term by term from lower to higher degree.By using a random vector and randomly shifting,it requires no condition on the input matrix and works with probability one.In the case that coefficients of entries of the given polynomial matrix are all integers and that the algorithm is performed in exact computation,by using the modular technique,a parallelized version of the RCH method is also given.Comparisons with other algorithms in both theoretical complexity analysis and computational tests are given to show its effectiveness.
基金supported by National Key Basic Research Project of China (Grant No.2011CB302400)National Natural Science Foundation of China (Grant Nos. 10971217, 60970152 and 61121062)IIE'S Research Project on Cryptography (Grant No. Y3Z0013102)
文摘An efficient algorithm is proposed for factoring polynomials over an algebraic extension field defined by a polynomial ring modulo a maximal ideal. If the maximal ideal is given by its CrSbner basis, no extra Grbbner basis computation is needed for factoring a polynomial over this extension field. Nothing more than linear algebraic technique is used to get a characteristic polynomial of a generic linear map. Then this polynomial is factorized over the ground field. From its factors, the factorization of the polynomial over the extension field is obtained. The algorithm has been implemented in Magma and computer experiments indicate that it is very efficient, particularly for complicated examples.
基金supported by National Key Basic Research Project of China (Grant No.2011CB302400)National Natural Science Foundation of China (Grant Nos. 10971217 and 61121062)
文摘In 2002, Faugere presented the famous F5 algorithm for computing GrSbner basis where two cri- teria, syzygy criterion and rewritten criterion, were proposed to avoid redundant computations. He proved the correctness of the syzygy criterion, but the proof for the correctness of the rewritten criterion was left. Since then, F5 has been studied extensively. Some proofs for the correctness of F5 were proposed, but these proofs are valid only under some extra assumptions. In this paper, we give a proof for the correctness of F5B, an equivalent version of F5 in Buchberger's style. The proof is valid for both homogeneous and non-homogeneous polynomial systems. Since this proof does not depend on the computing order of the S-pairs, any strategy of selecting S-pairs could be used in F5B or F5. Furthermore, we propose a natural and non-incremental variant of F5 where two revised criteria can be used to remove almost all redundant S-pairs.
基金partially supported by National Natural Science Foundation of China (Grant Nos. 10761006, 11161034)
文摘By catching the so-called strictly critical points,this paper presents an effective algorithm for computing the global infimum of a polynomial function.For a multivariate real polynomial f ,the algorithm in this paper is able to decide whether or not the global infimum of f is finite.In the case of f having a finite infimum,the global infimum of f can be accurately coded in the Interval Representation.Another usage of our algorithm to decide whether or not the infimum of f is attained when the global infimum of f is finite.In the design of our algorithm,Wu’s well-known method plays an important role.
基金supported by the National Natural Science Foundation of China under Grant No.11271156Science and Technology Development Plan of Jilin Province under Grant No.20130101179JCPublic Computing Platform in Jilin Province
文摘This paper studies the minimal monomial basis of the n-variable Birkhoff interpolation problem. First, the authors give a fast B-Lex algorithm which has an explicit geometric interpretation to compute the minimal monomial interpolation basis under lexieographie order and the algorithm is in fact a generalization of lex game algorithm. In practice, people usually desire the lowest degree interpolation polynomial, so the interpolation problems need to be solved under, for example, graded monomial order instead of lexicographie order. However, there barely exist fast algorithms for the non- lexicographic order problem. Hence, the authors in addition provide a criterion to determine whether an n-variable Birkhoff interpolation problem has unique minimal monomial basis, which means it owns the same minimal monomial basis w.r.t, arbitrary monomial order. Thus, for problems in this case, the authors can easily get the minimal monomial basis with little computation cost w.r.t, arbitrary monomial order by using our fast B-Lex algorithm.