期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于CEEMD-SE和LSTM的滚动轴承剩余寿命预测
被引量:
7
1
作者
高宏玉
王典
张守京
《轻工机械》
CAS
2021年第3期10-15,共6页
针对滚动轴承退化数据的复杂性和传统的寿命预测方法不能充分利用数据的相关性从而导致预测精度不高的问题,课题组提出了一种基于多频率尺度样本熵(SE)和长短期记忆神经网络(LSTM)相结合的寿命预测模型。该模型采用互补集成经验模态分解...
针对滚动轴承退化数据的复杂性和传统的寿命预测方法不能充分利用数据的相关性从而导致预测精度不高的问题,课题组提出了一种基于多频率尺度样本熵(SE)和长短期记忆神经网络(LSTM)相结合的寿命预测模型。该模型采用互补集成经验模态分解(CEEMD)结合相关系数分析,从滚动轴承振动信号中提取包含主要退化信息的IMF分量,并提取其样本熵矩阵,用于训练和测试LSTM。通过滚动轴承全寿命试验证明该模型可以准确预测滚动轴承剩余寿命,与BP神经网络和极限学习机(ELM)的预测效果对比验证了该模型的有效性。
展开更多
关键词
滚动轴承
剩余寿命预测
集成经验模态分解(CEEMD)
多频率尺度样本熵
长短期记忆神经网络
下载PDF
职称材料
题名
基于CEEMD-SE和LSTM的滚动轴承剩余寿命预测
被引量:
7
1
作者
高宏玉
王典
张守京
机构
北奔重型汽车集团有限公司
西安工程大学机电工程学院
出处
《轻工机械》
CAS
2021年第3期10-15,共6页
基金
国家重点研发计划项目(2019YFB1707205)
西安市现代智能纺织装备重点实验室(2019220614SYS021CG043)
陕西省教育厅科研计划项目(17JK0321)。
文摘
针对滚动轴承退化数据的复杂性和传统的寿命预测方法不能充分利用数据的相关性从而导致预测精度不高的问题,课题组提出了一种基于多频率尺度样本熵(SE)和长短期记忆神经网络(LSTM)相结合的寿命预测模型。该模型采用互补集成经验模态分解(CEEMD)结合相关系数分析,从滚动轴承振动信号中提取包含主要退化信息的IMF分量,并提取其样本熵矩阵,用于训练和测试LSTM。通过滚动轴承全寿命试验证明该模型可以准确预测滚动轴承剩余寿命,与BP神经网络和极限学习机(ELM)的预测效果对比验证了该模型的有效性。
关键词
滚动轴承
剩余寿命预测
集成经验模态分解(CEEMD)
多频率尺度样本熵
长短期记忆神经网络
Keywords
rolling bearing
remaining useful life
CEEMD
multi frequency scale sample entropy
LSTM(Long Short-Term Memory)neural network
分类号
TH133.33 [机械工程—机械制造及自动化]
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于CEEMD-SE和LSTM的滚动轴承剩余寿命预测
高宏玉
王典
张守京
《轻工机械》
CAS
2021
7
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部