风机的尾流效应会严重降低风电场的发电效率,传统风电场能量管理方法未考虑尾流效应的影响,各风机均采用最大功率点跟踪MPPT(maximum power point tracking)控制方案,风电场整体输出功率并非最优。尾流耦合现象极其复杂,难以用解析模型...风机的尾流效应会严重降低风电场的发电效率,传统风电场能量管理方法未考虑尾流效应的影响,各风机均采用最大功率点跟踪MPPT(maximum power point tracking)控制方案,风电场整体输出功率并非最优。尾流耦合现象极其复杂,难以用解析模型描述,传统基于模型的控制思路难以适用。为此,提出一种基于数据驱动的多风电机组协同控制方法。基于风电场的历史运行数据,采用神经网络辨识多风电机组之间的尾流交互模型。进一步,在风电场层通过粒子群算法在线求解多风电机组协同控制功率优化指令;在机组层由各机组控制器实现指令跟踪,最终实现风电场整体发电功率的优化。仿真结果表明:基于数据驱动方法建立的尾流交互模型,其误差在1%之内;在此基础上,进行多机协同优化控制,相比传统未考虑尾流效应的单机MPPT控制,风电场平均输出功率得到提升,验证了所提控制方法的有效性。展开更多
文摘风机的尾流效应会严重降低风电场的发电效率,传统风电场能量管理方法未考虑尾流效应的影响,各风机均采用最大功率点跟踪MPPT(maximum power point tracking)控制方案,风电场整体输出功率并非最优。尾流耦合现象极其复杂,难以用解析模型描述,传统基于模型的控制思路难以适用。为此,提出一种基于数据驱动的多风电机组协同控制方法。基于风电场的历史运行数据,采用神经网络辨识多风电机组之间的尾流交互模型。进一步,在风电场层通过粒子群算法在线求解多风电机组协同控制功率优化指令;在机组层由各机组控制器实现指令跟踪,最终实现风电场整体发电功率的优化。仿真结果表明:基于数据驱动方法建立的尾流交互模型,其误差在1%之内;在此基础上,进行多机协同优化控制,相比传统未考虑尾流效应的单机MPPT控制,风电场平均输出功率得到提升,验证了所提控制方法的有效性。