This paper investigates a consensus design problem for continuous-time first-order multiagent systems with uniform constant communication delay.Provided that the agent dynamic is unstable and the diagraph is undirecte...This paper investigates a consensus design problem for continuous-time first-order multiagent systems with uniform constant communication delay.Provided that the agent dynamic is unstable and the diagraph is undirected,sufficient conditions are derived to guarantee consensus.The key technique is the adoption of historical input information in the protocol.Especially,when agent's own historical input information is used in the protocol design,the consensus condition is constructed in terms of agent dynamic,communication delay,and the eigenratio of the network topology.Simulation result is presented to validate the effectiveness of the theoretical result.展开更多
To solve the dynamical consensus problem of second-order multi-agent systems with communication delay,delay-dependent compensations are added into the normal asynchronously-coupled consensus algorithm so as to make th...To solve the dynamical consensus problem of second-order multi-agent systems with communication delay,delay-dependent compensations are added into the normal asynchronously-coupled consensus algorithm so as to make the agents achieve a dynamical consensus. Based on frequency-domain analysis, sufficient conditions are gained for second-order multi-agent systems with communication delay under leaderless and leader-following consensus algorithms respectively. Simulation illustrates the correctness of the results.展开更多
基金supported by the Taishan Scholar Construction Engineering by Shandong Government,the National Natural Science Foundation of China under Grant Nos.61120106011 and 61203029
文摘This paper investigates a consensus design problem for continuous-time first-order multiagent systems with uniform constant communication delay.Provided that the agent dynamic is unstable and the diagraph is undirected,sufficient conditions are derived to guarantee consensus.The key technique is the adoption of historical input information in the protocol.Especially,when agent's own historical input information is used in the protocol design,the consensus condition is constructed in terms of agent dynamic,communication delay,and the eigenratio of the network topology.Simulation result is presented to validate the effectiveness of the theoretical result.
基金Supported by the National Natural Science Foundation of China under Grant Nos.61104092,61134007,and61203147the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘To solve the dynamical consensus problem of second-order multi-agent systems with communication delay,delay-dependent compensations are added into the normal asynchronously-coupled consensus algorithm so as to make the agents achieve a dynamical consensus. Based on frequency-domain analysis, sufficient conditions are gained for second-order multi-agent systems with communication delay under leaderless and leader-following consensus algorithms respectively. Simulation illustrates the correctness of the results.