This paper reviews recent studies on extreme high temperatures in China during summer. The focus is on the variation in extreme heat and tropical nights(i.e. high temperature at night), and the factors of influence....This paper reviews recent studies on extreme high temperatures in China during summer. The focus is on the variation in extreme heat and tropical nights(i.e. high temperature at night), and the factors of influence. Potential research topics in the future are also discussed.展开更多
Land surface temperature(LST)is an important variable for assessing climate change and related environmental impacts observed in recent decades.Regular monitoring of LST using satellite sensors such as MODIS has the a...Land surface temperature(LST)is an important variable for assessing climate change and related environmental impacts observed in recent decades.Regular monitoring of LST using satellite sensors such as MODIS has the advantage of global coverage,including topographically complex regions such as Nepal.In order to assess the climatic and environmental changes,daytime and nighttime LST trend analysis from 2000 to 2017 using Terra-MODIS monthly daytime and nighttime LST datasets at seasonal and annual scales over the territory of Nepal was performed.The magnitude of the trend was quantified using ordinary linear regression,while the statistical significance of the trend was identified by the Modified Mann—Kendall test.Our findings suggest that the nighttime LST in Nepal increased more prominently compared to the daytime LST,with more pronounced warming in the pre-monsoon and monsoon seasons.The annual nighttime LST increased at a rate of 0.05 K yr-1(p<0.01),while the daytime LST change was statistically insignificant.Spatial heterogeneity of the LST and LST change was observed both during the day and the night.The daytime LST remained fairly unchanged in large parts of Nepal,while a nighttime LST rise was dominant all across Nepal in the pre-monsoon and monsoon seasons.Our results on LST trends and their spatial distribution can facilitate a better understanding of regional climate changes.展开更多
The big-headed turtle Platysternon megacephalum is a stream-dwelling species whose ecology is poorly known. We carried out field and laboratory investigations to determine field body temperatures and thermal preferenc...The big-headed turtle Platysternon megacephalum is a stream-dwelling species whose ecology is poorly known. We carried out field and laboratory investigations to determine field body temperatures and thermal preference of this species. In the field, the body temperatures of the turtles conformed to the water temperature, with little diel variation in either summer or au- tumn. Over the diel cycle, the mean body temperatures ranged from 20.8℃ to 22.2℃ in summer and from 19.3℃ to 21.2℃ in autumn; the highest body temperatures ranged from 22.1℃ to 25.0℃ in summer and from 20.6℃ to 23.8℃ in autumn. In the laboratory, the preferred body temperature (Tp) was 25.3℃ Food intake was maximized at 24.0℃, whereas locomotor perfor- mance peaked at 30.0℃. Consequently, Tp was closer to the thermal optimum for food intake than for locomotion. Therefore, this freshwater turtle has relative low field body temperatures corresponding to its thermal environment. In addition, the turtle prefers low temperatures and has a low optimal temperature for food intake [Current Zoology 59 (5): 626-632, 20'13].展开更多
基金supported by the National Natural Science Foundation of China[grant number 41320104007]
文摘This paper reviews recent studies on extreme high temperatures in China during summer. The focus is on the variation in extreme heat and tropical nights(i.e. high temperature at night), and the factors of influence. Potential research topics in the future are also discussed.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences [grant numbers XDA2006010103 and XDA19070301]the National Natural Science Foundation of China [grant numbers 41830650,91737205,91637313,and 41661144043]
文摘Land surface temperature(LST)is an important variable for assessing climate change and related environmental impacts observed in recent decades.Regular monitoring of LST using satellite sensors such as MODIS has the advantage of global coverage,including topographically complex regions such as Nepal.In order to assess the climatic and environmental changes,daytime and nighttime LST trend analysis from 2000 to 2017 using Terra-MODIS monthly daytime and nighttime LST datasets at seasonal and annual scales over the territory of Nepal was performed.The magnitude of the trend was quantified using ordinary linear regression,while the statistical significance of the trend was identified by the Modified Mann—Kendall test.Our findings suggest that the nighttime LST in Nepal increased more prominently compared to the daytime LST,with more pronounced warming in the pre-monsoon and monsoon seasons.The annual nighttime LST increased at a rate of 0.05 K yr-1(p<0.01),while the daytime LST change was statistically insignificant.Spatial heterogeneity of the LST and LST change was observed both during the day and the night.The daytime LST remained fairly unchanged in large parts of Nepal,while a nighttime LST rise was dominant all across Nepal in the pre-monsoon and monsoon seasons.Our results on LST trends and their spatial distribution can facilitate a better understanding of regional climate changes.
文摘The big-headed turtle Platysternon megacephalum is a stream-dwelling species whose ecology is poorly known. We carried out field and laboratory investigations to determine field body temperatures and thermal preference of this species. In the field, the body temperatures of the turtles conformed to the water temperature, with little diel variation in either summer or au- tumn. Over the diel cycle, the mean body temperatures ranged from 20.8℃ to 22.2℃ in summer and from 19.3℃ to 21.2℃ in autumn; the highest body temperatures ranged from 22.1℃ to 25.0℃ in summer and from 20.6℃ to 23.8℃ in autumn. In the laboratory, the preferred body temperature (Tp) was 25.3℃ Food intake was maximized at 24.0℃, whereas locomotor perfor- mance peaked at 30.0℃. Consequently, Tp was closer to the thermal optimum for food intake than for locomotion. Therefore, this freshwater turtle has relative low field body temperatures corresponding to its thermal environment. In addition, the turtle prefers low temperatures and has a low optimal temperature for food intake [Current Zoology 59 (5): 626-632, 20'13].