Based on hourly precipitation from national surface stations,persistent heavy rainfall events(PHREs)over the Sichuan Basin(SCB)are explored during the warm season(May to September)from 2000 to 2015 to compare synoptic...Based on hourly precipitation from national surface stations,persistent heavy rainfall events(PHREs)over the Sichuan Basin(SCB)are explored during the warm season(May to September)from 2000 to 2015 to compare synoptic circulations and maintenance mechanisms between different PHRE types.There are two main types of PHREs:one is characterized by a rain belt west of 106°E over the SCB(WSB-PHREs),and the other features a rain belt east of 106°E over the SCB(ESB-PHREs).In total,there are 18 ESB-PHREs and 10 WSB-PHREs during the study period.Overall,the rain belts of WSB-PHREs are along the terrain distribution east of the Tibetan Plateau,while the precipitation intensity of ESB-PHREs is stronger.For the two types of PHREs,the shortwave trough over the SCB and the western Pacific subtropical high act as their favorable background environments,particularly for ESB-PHREs.The water vapor of WSB-PHREs is mainly transported from the South China Sea,whereas for ESB-PHREs the South China Sea and Bay of Bengal are their main moisture sources.The composite vorticity budgets of southwest vortices during their mature stage indicate that the convergence effect is a dominant factor for maintaining the two types of PHREs,and the strong vertical vorticity advection is also favorable,but the relative contribution of vertical advection is larger for WSB-PHREs.展开更多
In order to get insight into the mechanism of summer rainstorm occurred in central Shandong Province and further improve the prediction accuracy,the FY-2E satellite TBB data and 6 h of NCEP/NCAR 1°×1° r...In order to get insight into the mechanism of summer rainstorm occurred in central Shandong Province and further improve the prediction accuracy,the FY-2E satellite TBB data and 6 h of NCEP/NCAR 1°×1° reanalysis data were used to carry out the weather dynamics diagnosis and TBB cloud image analysis of a heavy rain happened in Anqiu City on July 18,2010.The results showed that the Anqiu torrential rain was caused by common effects of the subtropical high and upper trough and ground cyclone system;TBB strong low clouds moved with cloud band along the low level jet direction,and closely associated with water vapor and energy belt,while the heavy rain occurred in the north of TBB light in low temperature zone,making the unstable energy release above the Anqiu area;the changes of the vertical spiral degrees at center could well guide the movement of the ground cyclonic center.展开更多
This paper analyzes the heavy rainstorm in northeast Dongting Lake on June 4, 2014. Results indicate the weather situation, radar echo and the satellite imagery of the strong precipitation. Besides, the warm and wet w...This paper analyzes the heavy rainstorm in northeast Dongting Lake on June 4, 2014. Results indicate the weather situation, radar echo and the satellite imagery of the strong precipitation. Besides, the warm and wet water vapor in Dongting Lake also contributes to this heavy rainstorm. As the astronomical precipitation cycle in this precipitation is outstanding, it is essential to pay attention to and use the astronomical precipitation forecast method.展开更多
Helicity was applied to analyze several high-wind and rainstorm processes, which occurred from May to June, 2001 over Yunnan in early summer. The results of diagnostic analyses show that the rainstorm occurs in the ar...Helicity was applied to analyze several high-wind and rainstorm processes, which occurred from May to June, 2001 over Yunnan in early summer. The results of diagnostic analyses show that the rainstorm occurs in the area in which hp is positive at 700 hPa and energy is unstable. The change of helicity can reflect the movement and development of synoptic system and the position and intensity of the rainstorm. The value of hp is a negative center at the upper level and a positive at the lower level over the rainstorm position; moreover it can reflect the characteristics of vertical distribution and rotational motion.展开更多
The relationships between the summer rainfall in China and the atmospheric heat sources over the eastern Tibetan Plateau and the western Pacific warm pool were analyzed comparatively, using the NCEP/NCAR reanalysis da...The relationships between the summer rainfall in China and the atmospheric heat sources over the eastern Tibetan Plateau and the western Pacific warm pool were analyzed comparatively, using the NCEP/NCAR reanalysis daily data. The strong (weak) heat source in summer over the eastern Tibetan Plateau will lead to abundant (scarce) summer rainfall in the Yangtze River basin, and scarce/abundant summer rainfall in the eastern part of Southern China. While the strong (weak) heat source in summer over the western Pacific warm pool will lead to another pattern of abundant (scarce) summer rainfall in the middle-lower reaches of the Yangtze River and scarce (abundant) summer rainfall in Southern China and in the region of northern Jiangsu to southern Shandong. Comparatively, the heat source over the eastern Tibetan Plateau affects a larger area of summer rainfall than the heat source over the western Pacific. In both cases of the heat source anomalies over the eastern Tibetan Plateau and over the western Pacific, there exist EAP-like teleconnection patterns in East Asia. The summer rainfall in China is influenced directly by the abnormal vertical motion, which is related closely to the abnormal heat sources in the atmosphere. The ridge line of the western Pacific High locates far south (north) in summer in the case of strong (weak) heat sources over the two areas mentioned above.展开更多
This paper tests the impacts of cloud-induced mass forcing on the moist potential vorticity (MPV) anomaly associated with torrential rains caused by Typhoon No.9914 (Dan) by using fine model simulation data output...This paper tests the impacts of cloud-induced mass forcing on the moist potential vorticity (MPV) anomaly associated with torrential rains caused by Typhoon No.9914 (Dan) by using fine model simulation data outputted by the Fifth-Generation NCAR / Penn State Mesoscale Model (MMS). The diagnostic results show that the positive MPV anomaly region, which is obtained by integrating the MPV from 600 hPa to 300 hPa in the vertical, roughly coincides with the precipitation at their synchronous stages either in position or in the distribution pattem, and the maximum positive MPV area of Dan is located mainly between 600 hPa and 300 hPa, which is much higher than torrential rain cases. Further analyses also showed that the value of positive MPV anomaly increased or decreased with the development of Dan, and the positive MPV anomaly may also be served as a tracer to indicate the evolution of tropical cyclone intensity.展开更多
After its landfall in China's mainland in 2006, Typhoon Bilis brought about torrential rainfall amplification at the edge of Guangdong, Jiangxi, and Hunan provinces, causing severe disasters. From a cloud-microphysic...After its landfall in China's mainland in 2006, Typhoon Bilis brought about torrential rainfall amplification at the edge of Guangdong, Jiangxi, and Hunan provinces, causing severe disasters. From a cloud-microphysical perspective, we discuss the differences of cloud-microphysical processes before and during the precipitation amplification and possible causes of the rain- fall amplification by using high-resolution simulation data. The results show that the cloud-microphysical characteristics dur- ing the above two periods are significantly different. With the distinct increase in the rainfall intensity, the cloud hydrometeor contents increase markedly, especially those of the ice-phase hydrometeors including ice, snow and graupel, contributing more to the surface rainfall. The clouds develop highly and vigorously. Comparisons of conversion rates of the cloud hydrometeors between the above two periods show that the distinct increases in the cloud water content caused by the distinct enhancement of the water vapor condensation rate contribute to the surface rainfall mainly in two ways. First, the rain water content increas- es significantly by accretion of cloud water by rain water, which thus contributes to the surface rainfall. Second, the accretion of cloud water by snow increases significantly the content of snow, which is then converted to graupel by accretion of snow by graupel. And then the graupel melts into rain water, which subsequently contributes to the surface rainfall amplification. In summary, a flow chart is given to clarify the cloud-micropbysical cause of the torrential rainfall amplification associated with Bills.展开更多
Interannual variation of summer precipitation in East China, and frequency of rainstorms during the monsoon season from 1961 to 2010, are analyzed in this study. It is found that the two variables show opposite trends...Interannual variation of summer precipitation in East China, and frequency of rainstorms during the monsoon season from 1961 to 2010, are analyzed in this study. It is found that the two variables show opposite trends on a decadal time scale: frequency of rainstorms increases significantly after the 1990 s, while summer precipitation in East China decreases during the same period. Analysis of the spatial distribution of summer rainstorm frequency from 1961 to 2010 indicates that it decreases from the southeast to the northwest at the east edge of the large-scale topography associated with the plateaus. Spatial distribution of rainstorms with daily rainfall greater than 50 mm is characterized by a "high in the southeast and low in the northwest" pattern, similar to the staircase distribution of the topography. However, the spatial distribution of variation in both summer precipitation and frequency of extreme rainstorms under global warming differs significantly from the three-step staircase topography. It is shown that moisture characteristics of summer precipitation and extreme rainstorms during the monsoon season in East China, including moisture transport pathways, moist flow pattern, and spatial structure of the merging area of moist flows, differ significantly. Areas of frequent rainstorms include the Yangtze River Valley and South China. Column-integrated moisture transport and its spatial structure could be summarized as a "merging" of three branches of intense moist flows from low and middle latitude oceans, and "convergence" of column-integrated moisture fluxes. The merging area for moist flow associated with rainstorms in the high frequency region is located slightly to the south of the monsoonal precipitation or non-rainstorm precipitation, with significantly strong moisture convergence. In addition, the summer moist flow pattern in East China has a great influence on the frequency of extreme rainstorms. Moisture flux vectors in the region of frequent rainstorms correspond to vortical flow pattern. A comparison of moisture flux vectors associated with non-rainstorms and rainstorms indicates that the moist vortex associated with rainstorms is smaller in size and located to the south of the precipitation maximum, while the moist vortex associated with non-rainstorms is larger and located to the north. It is shown that column-integrated moist transport vortices and the structure of moist flux convergence have significant impacts on the north-south oscillation of frequent rainstorm areas in East China, which is synchronized with the maximum vorticity of moisture transport and the minimum of convergence on the decadal time scale. Synthesis of moisture transport pathways and related circulation impacts leads to a conceptual model of moisture flow associated with rainstorms.展开更多
基金supported by the National Key R&D Program of China[grant number 2018YFC0809400]the National Natural Science Foundation of China[grant number 41975057].
文摘Based on hourly precipitation from national surface stations,persistent heavy rainfall events(PHREs)over the Sichuan Basin(SCB)are explored during the warm season(May to September)from 2000 to 2015 to compare synoptic circulations and maintenance mechanisms between different PHRE types.There are two main types of PHREs:one is characterized by a rain belt west of 106°E over the SCB(WSB-PHREs),and the other features a rain belt east of 106°E over the SCB(ESB-PHREs).In total,there are 18 ESB-PHREs and 10 WSB-PHREs during the study period.Overall,the rain belts of WSB-PHREs are along the terrain distribution east of the Tibetan Plateau,while the precipitation intensity of ESB-PHREs is stronger.For the two types of PHREs,the shortwave trough over the SCB and the western Pacific subtropical high act as their favorable background environments,particularly for ESB-PHREs.The water vapor of WSB-PHREs is mainly transported from the South China Sea,whereas for ESB-PHREs the South China Sea and Bay of Bengal are their main moisture sources.The composite vorticity budgets of southwest vortices during their mature stage indicate that the convergence effect is a dominant factor for maintaining the two types of PHREs,and the strong vertical vorticity advection is also favorable,but the relative contribution of vertical advection is larger for WSB-PHREs.
基金Supported by the Special Project for the Weathermen of Shandong Province(sdyby2012-07)the Study on the Analysis and Prediction Methods for the SpringBackflow Snowstorm of Weifang City(CMAYBY2014-039)~~
文摘In order to get insight into the mechanism of summer rainstorm occurred in central Shandong Province and further improve the prediction accuracy,the FY-2E satellite TBB data and 6 h of NCEP/NCAR 1°×1° reanalysis data were used to carry out the weather dynamics diagnosis and TBB cloud image analysis of a heavy rain happened in Anqiu City on July 18,2010.The results showed that the Anqiu torrential rain was caused by common effects of the subtropical high and upper trough and ground cyclone system;TBB strong low clouds moved with cloud band along the low level jet direction,and closely associated with water vapor and energy belt,while the heavy rain occurred in the north of TBB light in low temperature zone,making the unstable energy release above the Anqiu area;the changes of the vertical spiral degrees at center could well guide the movement of the ground cyclonic center.
基金Supported by the"Short,Cheap,Fast"Subject of Hunan Meteorological Bureau in 2011(No.023)~~
文摘This paper analyzes the heavy rainstorm in northeast Dongting Lake on June 4, 2014. Results indicate the weather situation, radar echo and the satellite imagery of the strong precipitation. Besides, the warm and wet water vapor in Dongting Lake also contributes to this heavy rainstorm. As the astronomical precipitation cycle in this precipitation is outstanding, it is essential to pay attention to and use the astronomical precipitation forecast method.
基金Applied Foundation Project of Yunnan (2000D0091M) Key Scientific Research Program for the 10th-five-year economic development plan (2001NG43)
文摘Helicity was applied to analyze several high-wind and rainstorm processes, which occurred from May to June, 2001 over Yunnan in early summer. The results of diagnostic analyses show that the rainstorm occurs in the area in which hp is positive at 700 hPa and energy is unstable. The change of helicity can reflect the movement and development of synoptic system and the position and intensity of the rainstorm. The value of hp is a negative center at the upper level and a positive at the lower level over the rainstorm position; moreover it can reflect the characteristics of vertical distribution and rotational motion.
基金Part One in the project of Key National Fundamental Research and Development Planning (G1998040903) Natural Science Foundation of China (40175018)
文摘The relationships between the summer rainfall in China and the atmospheric heat sources over the eastern Tibetan Plateau and the western Pacific warm pool were analyzed comparatively, using the NCEP/NCAR reanalysis daily data. The strong (weak) heat source in summer over the eastern Tibetan Plateau will lead to abundant (scarce) summer rainfall in the Yangtze River basin, and scarce/abundant summer rainfall in the eastern part of Southern China. While the strong (weak) heat source in summer over the western Pacific warm pool will lead to another pattern of abundant (scarce) summer rainfall in the middle-lower reaches of the Yangtze River and scarce (abundant) summer rainfall in Southern China and in the region of northern Jiangsu to southern Shandong. Comparatively, the heat source over the eastern Tibetan Plateau affects a larger area of summer rainfall than the heat source over the western Pacific. In both cases of the heat source anomalies over the eastern Tibetan Plateau and over the western Pacific, there exist EAP-like teleconnection patterns in East Asia. The summer rainfall in China is influenced directly by the abnormal vertical motion, which is related closely to the abnormal heat sources in the atmosphere. The ridge line of the western Pacific High locates far south (north) in summer in the case of strong (weak) heat sources over the two areas mentioned above.
基金State Key Development Program for Basic Research of China (2009CB421505)National Natural Science Foundation of China (40505009)+1 种基金NMC-TIGGE Program (GYHY200706001)Project of State Key Laboratory of Severe Weather (2008LASW-A01)
文摘This paper tests the impacts of cloud-induced mass forcing on the moist potential vorticity (MPV) anomaly associated with torrential rains caused by Typhoon No.9914 (Dan) by using fine model simulation data outputted by the Fifth-Generation NCAR / Penn State Mesoscale Model (MMS). The diagnostic results show that the positive MPV anomaly region, which is obtained by integrating the MPV from 600 hPa to 300 hPa in the vertical, roughly coincides with the precipitation at their synchronous stages either in position or in the distribution pattem, and the maximum positive MPV area of Dan is located mainly between 600 hPa and 300 hPa, which is much higher than torrential rain cases. Further analyses also showed that the value of positive MPV anomaly increased or decreased with the development of Dan, and the positive MPV anomaly may also be served as a tracer to indicate the evolution of tropical cyclone intensity.
基金supported by the National Basic Research Program of China (Grant No. 2009CB421505)the National Natural Science Foundation of China (Grant No. 41175056)+1 种基金Shanghai Typhoon Research Foundation (Grant No. 2013ST01)the Key Research Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-05-01)
文摘After its landfall in China's mainland in 2006, Typhoon Bilis brought about torrential rainfall amplification at the edge of Guangdong, Jiangxi, and Hunan provinces, causing severe disasters. From a cloud-microphysical perspective, we discuss the differences of cloud-microphysical processes before and during the precipitation amplification and possible causes of the rain- fall amplification by using high-resolution simulation data. The results show that the cloud-microphysical characteristics dur- ing the above two periods are significantly different. With the distinct increase in the rainfall intensity, the cloud hydrometeor contents increase markedly, especially those of the ice-phase hydrometeors including ice, snow and graupel, contributing more to the surface rainfall. The clouds develop highly and vigorously. Comparisons of conversion rates of the cloud hydrometeors between the above two periods show that the distinct increases in the cloud water content caused by the distinct enhancement of the water vapor condensation rate contribute to the surface rainfall mainly in two ways. First, the rain water content increas- es significantly by accretion of cloud water by rain water, which thus contributes to the surface rainfall. Second, the accretion of cloud water by snow increases significantly the content of snow, which is then converted to graupel by accretion of snow by graupel. And then the graupel melts into rain water, which subsequently contributes to the surface rainfall amplification. In summary, a flow chart is given to clarify the cloud-micropbysical cause of the torrential rainfall amplification associated with Bills.
基金supported by the National Natural Science Foundation of China (Grant No. 41130960)the National Science and Technology Pillar Program of China (Grant No. 2012BAK10B04)the National Department of Public Benefit Research Foundation of China (Grant No. GYHY201406001)
文摘Interannual variation of summer precipitation in East China, and frequency of rainstorms during the monsoon season from 1961 to 2010, are analyzed in this study. It is found that the two variables show opposite trends on a decadal time scale: frequency of rainstorms increases significantly after the 1990 s, while summer precipitation in East China decreases during the same period. Analysis of the spatial distribution of summer rainstorm frequency from 1961 to 2010 indicates that it decreases from the southeast to the northwest at the east edge of the large-scale topography associated with the plateaus. Spatial distribution of rainstorms with daily rainfall greater than 50 mm is characterized by a "high in the southeast and low in the northwest" pattern, similar to the staircase distribution of the topography. However, the spatial distribution of variation in both summer precipitation and frequency of extreme rainstorms under global warming differs significantly from the three-step staircase topography. It is shown that moisture characteristics of summer precipitation and extreme rainstorms during the monsoon season in East China, including moisture transport pathways, moist flow pattern, and spatial structure of the merging area of moist flows, differ significantly. Areas of frequent rainstorms include the Yangtze River Valley and South China. Column-integrated moisture transport and its spatial structure could be summarized as a "merging" of three branches of intense moist flows from low and middle latitude oceans, and "convergence" of column-integrated moisture fluxes. The merging area for moist flow associated with rainstorms in the high frequency region is located slightly to the south of the monsoonal precipitation or non-rainstorm precipitation, with significantly strong moisture convergence. In addition, the summer moist flow pattern in East China has a great influence on the frequency of extreme rainstorms. Moisture flux vectors in the region of frequent rainstorms correspond to vortical flow pattern. A comparison of moisture flux vectors associated with non-rainstorms and rainstorms indicates that the moist vortex associated with rainstorms is smaller in size and located to the south of the precipitation maximum, while the moist vortex associated with non-rainstorms is larger and located to the north. It is shown that column-integrated moist transport vortices and the structure of moist flux convergence have significant impacts on the north-south oscillation of frequent rainstorm areas in East China, which is synchronized with the maximum vorticity of moisture transport and the minimum of convergence on the decadal time scale. Synthesis of moisture transport pathways and related circulation impacts leads to a conceptual model of moisture flow associated with rainstorms.