In this paper, the Finite Volume Coastal Ocean Model (FVCOM) was employed and configured for 3 dimensional numerical simulations of tide and tidal current based on the field observations in Zhanjiang Bay. The model...In this paper, the Finite Volume Coastal Ocean Model (FVCOM) was employed and configured for 3 dimensional numerical simulations of tide and tidal current based on the field observations in Zhanjiang Bay. The model's results agree well with the field observed data. Based on the well validated model, the hydrodynamic fields of zhanjiang bay area were calculated both before the Donghai Dam constructing and after that. Compared the tidal level, current field, tidal capacity and water exchange ratio before the construction of Dohai dam with those after construction of the dam, we analyzed and get some conclusions of effects of Donghai Dam on Hydrodynamic environment of the Zhanjiang Bay.展开更多
Inter-annual variability of the Kuroshio water intrusion on the shelf of East China Sea (ECS) was simulated with a nested global and Northwest Pacific ocean circulation model.The model analysis reveals the influence o...Inter-annual variability of the Kuroshio water intrusion on the shelf of East China Sea (ECS) was simulated with a nested global and Northwest Pacific ocean circulation model.The model analysis reveals the influence of the variability of Kuroshio transport east of Taiwan on the intrusion to the northeast of Taiwan:high correlation (r=0.92) with the on-shore volume flux in the lower layer (50 200 m) ;low correlation (r=0.50) with the on-shore flux in the upper layer (0 50 m) .Spatial distribution of correlations between volume fluxes and sea surface height suggests that inter-annual variability of the Kuroshio flux east of Taiwan and its subsurface water intruding to the shelf lag behind the sea surface height anomalies in the central Pacific at 162 E by about 14 months,and could be related to wind-forced variation in the interior North Pacific that propagates westward as Rossby waves.The intrusion of Kuroshio surface water is also influenced by local winds.The intruding Kuroshio subsurface water causes variations of temperature and salinity of bottom waters on the southern ECS shelf.The influence of the intruding Kuroshio subsurface water extends widely from the shelf slope northeast of Taiwan northward to the central ECS near the 60 m isobath,and northeastward to the region near the 90 m isobath.展开更多
Large amplitude internal solitary waves(ISWs) often exhibit highly nonlinear effects and may contribute significantly to mixing and energy transporting in the ocean.We observed highly nonlinear ISWs over the continent...Large amplitude internal solitary waves(ISWs) often exhibit highly nonlinear effects and may contribute significantly to mixing and energy transporting in the ocean.We observed highly nonlinear ISWs over the continental shelf of the northwestern South China Sea(19°35'N,112°E) in May 2005 during the Wenchang Internal Wave Experiment using in-situ time series data from an array of temperature and salinity sensors,and an acoustic Doppler current profiler(ADCP).We summarized the characteristics of the ISWs and compared them with those of existing internal wave theories.Particular attention has been paid to characterizing solitons in terms of the relationship between shape and amplitude-width.Comparison between theoretical prediction and observation results shows that the high nonlinearity of these waves is better represented by the second-order extended Korteweg-de Vries(KdV) theory than the first-order KdV model.These results indicate that the northwestern South China Sea(SCS) is rich in highly nonlinear ISWs that are an indispensable part of the energy budget of the internal waves in the northern South China Sea.展开更多
The method for determining P CO 2 in the atmosphere and water by using gas chromatography was studied. For determination of P CO 2 in the atmosphere, a sampling method was developed in which the chromatograph was conn...The method for determining P CO 2 in the atmosphere and water by using gas chromatography was studied. For determination of P CO 2 in the atmosphere, a sampling method was developed in which the chromatograph was connected to a 6 port valve with a sampling pipe opening to the atmosphere, so gas pressure in the sampling pipe was identical to that of the atmosphere. A semi automatic seawater atmosphere equilibrium system was designed to determine the P CO 2 in seawater. The equilibrium chamber contained in situ seawater and the well equilibrated gas was pushed into the sampling pipe by sample water, so pressure and temperature calibration could be avoided. This method has high accuracy for the determination of P CO 2 in the air and seawater, and was used for in situ determination of P CO 2 in the atmosphere and of the seawater sample in the JGOFS cruise in the East China Sea.展开更多
Measurements ofpH, total alkalinity (TA), partial pressure of CO2 (pCO2) and air-sea CO2 flux (FCO2) were conducted for the inner continental shelf of the East China Sea (ECS) during August 2011. Variations in...Measurements ofpH, total alkalinity (TA), partial pressure of CO2 (pCO2) and air-sea CO2 flux (FCO2) were conducted for the inner continental shelf of the East China Sea (ECS) during August 2011. Variations in pCO2 distribution and FCO2 magnitude during the construction of the Three Gorges Dam (TGD) (2003-2009), and the potential effects of the TGD on the air-sea CO2 exchange were examined. Results showed that the ECS acts as an overall CO2 sink during summer, with pCO2 ranging from 107 to 585 p.atm and an average FCO2 of -6.39 mmol/(m2·d). Low pCO2 (〈350 μatm) levels were observed at the central shelf (28°-32°N, 123°-125.5°E) where most CO2-absorption occurred. HighpCO2 (〉420 μatm) levels were found in the Changjiang estuary and Hangzhou Bay which acted as the main CO2 source. A negative relationship between pCO2 and salinity (R2=0.722 0) in the estuary zone indicated the predominant effect of the Changjiang Diluted Water (CDW) on the seawater CO2 system, whereas a positive relationship (R2=0.744 8) in the offshore zone revealed the influence of the Taiwan Current Warm Water (TCWW). Together with the historical data, our results indicated that the CO2 sink has shown a shift southwest while FC02 exhibited dramatic fluctuation during the construction of the TGD, which is located in the middle reaches of the Changjiang. These variations probably reflect fluctuation in the Changjiang runoff, nutrient import, phytoplankton productivity, and sediment input, which are likely to have been caused by the operations of the TGD. Nevertheless, the potential influence of the TGD on the CO2 flux in the ECS is worthy of further study.展开更多
The status of fishery stocks in the coastal waters of China is far from ideal, mainly due to climate change and the impacts of human activities (e.g., pollution and overfishing). Thus, the restoration and protection...The status of fishery stocks in the coastal waters of China is far from ideal, mainly due to climate change and the impacts of human activities (e.g., pollution and overfishing). Thus, the restoration and protection of fishery resources have become critical and complex. The stability and balanced structure of the fish community is a basic foundation for the protection of fishery resources. Based on data collected from bottom trawls by the R/V Beidou in continental shelf of the East China Sea in November 2006 and February 2007, changes in the composition and diversity of fish species and functional groups were analyzed. The research area was divided into offshore waters and inshore waters by the two-way indicator species analysis (TWIA). The results showed that the dominant species were different between offshore waters and inshore waters and also varied with the survey time. The most abundant family was Sciaenidae and Teraponidae in November 2006, Sciaenidae, Engraulidae and Triglidae were most abundant in February 2007. The species belonged mainly to mobile piscivores (G6), benthivores/piscivores (G4), benthivores (G3) and planktivores (G1), and the dominant species in November 2006 were commercial species (e.g. Larimichthys polyactis and Trichiurusjaponicus), but small-sized species were dominant in February 2007 (e.g., Harpadon nehereus, Benthosema pterotum, Champsodon capensis, and Acropoma japonieum). The species diversity showed a similar trend as the functional group diversity. Stations with higher diversity were mainly distributed in inshore waters in February 2007, whereas higher diversity was found in offshore waters in November 2006. The highest biomass and species number were found in G6 group, followed by the G4, G5 and GI groups. The distribution of the number of individuals of each functional group showed the opposite trend as that of the biomass distribution. In addition, the size spectra were mainly concentrated around 3-29 cm, and the individual number of fish species gradually decreased with the increase in body size, but the relative biomass showed a moderate fluctuation in each size class. These changes showed that species with faster growth rate and earlier maturity age became dominant in continental shelf of the East China Sea. So the variations in biological characteristics of fish should be fully considered in maintaining sustainable utilization of fishery resource.展开更多
For understanding more about the water exchange between the Kuroshio and the East China Sea,We studied the variability of the Kuroshio in the East China Sea(ECS) in the period of 1991 to 2008 using a three-dimensional...For understanding more about the water exchange between the Kuroshio and the East China Sea,We studied the variability of the Kuroshio in the East China Sea(ECS) in the period of 1991 to 2008 using a three-dimensional circulation model,and calculated Kuroshio onshore volume transport in the ECS at the minimum of 0.48 Sv(1 Sv ;106 m3/s) in summer and the maximum of 1.69 Sv in winter.Based on the data of WOA05 and NCEP,The modeled result indicates that the Kuroshio transport east of Taiwan Island decreased since 2000.Lateral movements tended to be stronger at two ends of the Kuroshio in the ECS than that of the middle segment.In addition,we applied a spectral mixture model(SMM) to determine the exchange zone between the Kuroshio and the shelf water of the ECS.The result reveals a significantly negative correlation(coefficient of-0.78) between the area of exchange zone and the Kuroshio onshore transport at 200 m isobath in the ECS.This conclusion brings a new view for the water exchange between the Kuroshio and the East China Sea.Additional to annual and semi-annual signals,intra-seasonal signal of probably the Pacific origin may trigger the events of Kuroshio intrusion and exchange in the ECS.展开更多
Xiangshan bay is a narrow semi-closed bay and situated on the northwestern coast of the East China Sea. Over past decades, it has become to a major bay with intensive human activities, dense urbanized area, and poor w...Xiangshan bay is a narrow semi-closed bay and situated on the northwestern coast of the East China Sea. Over past decades, it has become to a major bay with intensive human activities, dense urbanized area, and poor water quality. The aim of this paper was to reveal the ecological status through the elucidation of the species composition, abundance, biomass and diversity of macrobenthos in this bay. Six intertidal sections were surveyed from January 2007 to November 2008 quarterly. Sections TG, HD and XH are located in the three inner bays, sections QJ and WS are located near the thermal power plants, and section XX is located at the outer part of Xiangshan Bay. Great variations in macrobenthos community were indentified, and the species composition of the community in the present study showed the dominance in the order of molluscs (bivalves and gastropods), crustaceans and others, and only few Polychaeta were recorded. Only three dominant species, Littorina brevicula, llyplax tansuiensis, and Cerithidea cingu- lata were collected in all the sections, and a total of 19 dominant species were recorded only in one section. Two-way ANOVA analyses of abundance indicated that there were significant differences among sections or seasons. Shannon-Wiener diversity index (H') had its maximum (2.45) in section QJ, and minimum (1.76) in section TG Multiple irregular k-dominance plots clearly showed that the study area was polluted and the macrobenthos community was under stress. We conclude that the macrobenthos of Xiang- shan Bay have been disturbed by human activities, especially at the interior bay.展开更多
The Okinawa Trough is a natural laboratory for the study of air-sea interaction and paleoenvironmental change. It has been demonstrated that present offshore export of particles in the bottom nepheloid layer occur pri...The Okinawa Trough is a natural laboratory for the study of air-sea interaction and paleoenvironmental change. It has been demonstrated that present offshore export of particles in the bottom nepheloid layer occur primarily with downwelling from the northeast winter monsoon, which is inhibited by a transverse circulation pattern in summer. This current system was very different during the Last Glacial Maximum owing to low sea level (-120 m) and exposure of a large shelf area. We collected sediment core Oki01 from the middle Okinawa Trough during 2012 using R/V Kexue No. 1 to elucidate the timing and cause of the current system transition in the East China Sea. Clay mineral, dry density, and elemental (Ti, Ca) composition of core Oki01 was analyzed. The results indicate that clay minerals derived mainly from the Huanghe (Yellow) and the Changjiang (Yangtze) Rivers during 16.0-11.6 ka, and the modem current system in the East China Sea formed beginning in the early Holocene. Therefore, mixing of East China Sea continental shelf, Changjiang River and partially Taiwan Island sediment are the major contributors. The decrease of log(Ti/Ca) and alternating provenance since the early Holocene indicate less sediment from the East China in summer because of resistance of the modern current system, i.e., a "water barrier" and upwelling. Conversely, sediment delivery persists in winter and log(Ti/Ca) indicates the winter monsoon signal since the early Holocene. Our evidence also suggests that sediment from Taiwan Island could be transported by the Kuroshio Current to the middle Okinawa Trough, where it mingles with winter monsoon- induced export of sediment from the Changjiang River and East China Sea continental shelf. Although the present research advances understanding of the evolutionary history of paleoenvironmental change in the Okinawa Trough, more sediment cores should be retrieved over wide areas to construct a larger scenario.展开更多
This review presents some of the latest achievements in sea fog research,including fog climatology,fog structure in the marine atmospheric boundary layer,and numerical simulations and forecasting of fog.With the devel...This review presents some of the latest achievements in sea fog research,including fog climatology,fog structure in the marine atmospheric boundary layer,and numerical simulations and forecasting of fog.With the development of atmospheric observational techniques and equipments,new facts about sea fog are revealed.The mechanisms involved in the formation,development and dissipation of sea fog are further explored with the help of advanced atmospheric models.展开更多
The available data on tidal currents spanning periods greater than six months for the continental shelf of the East China Sea (26°30.052′N, 122°35.998′E) were analyzed using several methods. Tidal Current ...The available data on tidal currents spanning periods greater than six months for the continental shelf of the East China Sea (26°30.052′N, 122°35.998′E) were analyzed using several methods. Tidal Current Harmonic Analysis results demonstrated that semi-diurnal tides dominated the current movement. The tidal currents of the principal diurnal and semidiurnal rotated clockwise with depth, with the deflection of the major semi-axes to the right in the upper layer and to the left in the lower layer. The vertical structures of two principal semi-diurnal constituents-M2 and S2-were similar, which indicates that the tidal currents are mainly barotropic in this area. The main features of the variation of the four principal tidal constituents with depth demonstrate that the currents in this region are influenced by the upper and lower boundary layers. Therefore, the tidal constituents of the shallow water are similar. Different vertical modes were calculated based on the Empirical Orthogonal Function (EOF) analysis of the Eastern and Northern components of the tidal currents, with a variance contribution for the zero-order model of at least 90%. The variance contribution of the baroclinic model is minimal, which further reveals a strong barotropic character for the tidal currents of this region.展开更多
文摘In this paper, the Finite Volume Coastal Ocean Model (FVCOM) was employed and configured for 3 dimensional numerical simulations of tide and tidal current based on the field observations in Zhanjiang Bay. The model's results agree well with the field observed data. Based on the well validated model, the hydrodynamic fields of zhanjiang bay area were calculated both before the Donghai Dam constructing and after that. Compared the tidal level, current field, tidal capacity and water exchange ratio before the construction of Dohai dam with those after construction of the dam, we analyzed and get some conclusions of effects of Donghai Dam on Hydrodynamic environment of the Zhanjiang Bay.
基金supported by the National Basic Research Program of China(973 Program,No.2010CB428904,No.2011CB403606)Natural Science Foundation of China(No.41128006,No.40830854)
文摘Inter-annual variability of the Kuroshio water intrusion on the shelf of East China Sea (ECS) was simulated with a nested global and Northwest Pacific ocean circulation model.The model analysis reveals the influence of the variability of Kuroshio transport east of Taiwan on the intrusion to the northeast of Taiwan:high correlation (r=0.92) with the on-shore volume flux in the lower layer (50 200 m) ;low correlation (r=0.50) with the on-shore flux in the upper layer (0 50 m) .Spatial distribution of correlations between volume fluxes and sea surface height suggests that inter-annual variability of the Kuroshio flux east of Taiwan and its subsurface water intruding to the shelf lag behind the sea surface height anomalies in the central Pacific at 162 E by about 14 months,and could be related to wind-forced variation in the interior North Pacific that propagates westward as Rossby waves.The intrusion of Kuroshio surface water is also influenced by local winds.The intruding Kuroshio subsurface water causes variations of temperature and salinity of bottom waters on the southern ECS shelf.The influence of the intruding Kuroshio subsurface water extends widely from the shelf slope northeast of Taiwan northward to the central ECS near the 60 m isobath,and northeastward to the region near the 90 m isobath.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No.KZCX1-YW-12)the National High Technology Research and Development Program of China (863 program) (No.2008AA09A401,No.2006AA09A109)
文摘Large amplitude internal solitary waves(ISWs) often exhibit highly nonlinear effects and may contribute significantly to mixing and energy transporting in the ocean.We observed highly nonlinear ISWs over the continental shelf of the northwestern South China Sea(19°35'N,112°E) in May 2005 during the Wenchang Internal Wave Experiment using in-situ time series data from an array of temperature and salinity sensors,and an acoustic Doppler current profiler(ADCP).We summarized the characteristics of the ISWs and compared them with those of existing internal wave theories.Particular attention has been paid to characterizing solitons in terms of the relationship between shape and amplitude-width.Comparison between theoretical prediction and observation results shows that the high nonlinearity of these waves is better represented by the second-order extended Korteweg-de Vries(KdV) theory than the first-order KdV model.These results indicate that the northwestern South China Sea(SCS) is rich in highly nonlinear ISWs that are an indispensable part of the energy budget of the internal waves in the northern South China Sea.
文摘The method for determining P CO 2 in the atmosphere and water by using gas chromatography was studied. For determination of P CO 2 in the atmosphere, a sampling method was developed in which the chromatograph was connected to a 6 port valve with a sampling pipe opening to the atmosphere, so gas pressure in the sampling pipe was identical to that of the atmosphere. A semi automatic seawater atmosphere equilibrium system was designed to determine the P CO 2 in seawater. The equilibrium chamber contained in situ seawater and the well equilibrated gas was pushed into the sampling pipe by sample water, so pressure and temperature calibration could be avoided. This method has high accuracy for the determination of P CO 2 in the air and seawater, and was used for in situ determination of P CO 2 in the atmosphere and of the seawater sample in the JGOFS cruise in the East China Sea.
基金Supported by the National Basic Research Program of China(973 Program)(No.2010CB951802)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA05030402)+2 种基金the Natural Science Foundation of China for Creative Research Groups(No.41121064)the National Natural Science Foundation of China(No.40906056)the Public Science and Technology Research Funds Projects of Ocean(No.200905012-9)
文摘Measurements ofpH, total alkalinity (TA), partial pressure of CO2 (pCO2) and air-sea CO2 flux (FCO2) were conducted for the inner continental shelf of the East China Sea (ECS) during August 2011. Variations in pCO2 distribution and FCO2 magnitude during the construction of the Three Gorges Dam (TGD) (2003-2009), and the potential effects of the TGD on the air-sea CO2 exchange were examined. Results showed that the ECS acts as an overall CO2 sink during summer, with pCO2 ranging from 107 to 585 p.atm and an average FCO2 of -6.39 mmol/(m2·d). Low pCO2 (〈350 μatm) levels were observed at the central shelf (28°-32°N, 123°-125.5°E) where most CO2-absorption occurred. HighpCO2 (〉420 μatm) levels were found in the Changjiang estuary and Hangzhou Bay which acted as the main CO2 source. A negative relationship between pCO2 and salinity (R2=0.722 0) in the estuary zone indicated the predominant effect of the Changjiang Diluted Water (CDW) on the seawater CO2 system, whereas a positive relationship (R2=0.744 8) in the offshore zone revealed the influence of the Taiwan Current Warm Water (TCWW). Together with the historical data, our results indicated that the CO2 sink has shown a shift southwest while FC02 exhibited dramatic fluctuation during the construction of the TGD, which is located in the middle reaches of the Changjiang. These variations probably reflect fluctuation in the Changjiang runoff, nutrient import, phytoplankton productivity, and sediment input, which are likely to have been caused by the operations of the TGD. Nevertheless, the potential influence of the TGD on the CO2 flux in the ECS is worthy of further study.
基金Supported by the Key Project of National Natural Science Foundation of China(No.31061160187)the National Basic Research Program of China(973 Program)(No.2010CB951204)+1 种基金Taishan Scholar Program of Shandong ProvinceYellow & Bohai Sea Scientific Observation and Experiment Station for Fishery Resources and Environment,Ministry of Agriculture
文摘The status of fishery stocks in the coastal waters of China is far from ideal, mainly due to climate change and the impacts of human activities (e.g., pollution and overfishing). Thus, the restoration and protection of fishery resources have become critical and complex. The stability and balanced structure of the fish community is a basic foundation for the protection of fishery resources. Based on data collected from bottom trawls by the R/V Beidou in continental shelf of the East China Sea in November 2006 and February 2007, changes in the composition and diversity of fish species and functional groups were analyzed. The research area was divided into offshore waters and inshore waters by the two-way indicator species analysis (TWIA). The results showed that the dominant species were different between offshore waters and inshore waters and also varied with the survey time. The most abundant family was Sciaenidae and Teraponidae in November 2006, Sciaenidae, Engraulidae and Triglidae were most abundant in February 2007. The species belonged mainly to mobile piscivores (G6), benthivores/piscivores (G4), benthivores (G3) and planktivores (G1), and the dominant species in November 2006 were commercial species (e.g. Larimichthys polyactis and Trichiurusjaponicus), but small-sized species were dominant in February 2007 (e.g., Harpadon nehereus, Benthosema pterotum, Champsodon capensis, and Acropoma japonieum). The species diversity showed a similar trend as the functional group diversity. Stations with higher diversity were mainly distributed in inshore waters in February 2007, whereas higher diversity was found in offshore waters in November 2006. The highest biomass and species number were found in G6 group, followed by the G4, G5 and GI groups. The distribution of the number of individuals of each functional group showed the opposite trend as that of the biomass distribution. In addition, the size spectra were mainly concentrated around 3-29 cm, and the individual number of fish species gradually decreased with the increase in body size, but the relative biomass showed a moderate fluctuation in each size class. These changes showed that species with faster growth rate and earlier maturity age became dominant in continental shelf of the East China Sea. So the variations in biological characteristics of fish should be fully considered in maintaining sustainable utilization of fishery resource.
基金Supported by the National Basic Research Program of China (973 Program) (Nos. 2005CB422300,2007CB411804,2010CB428904)the National Natural Science Foundation of China (Nos. 40976001,40940025,41006002)+2 种基金Tianjin Municipal Science and Technology Commission Project (No. 09JCYBJC07400)the "111 Project" (No.B07036)the Program for New Century Excellent Talents in University (No. NECT-07-0781)
文摘For understanding more about the water exchange between the Kuroshio and the East China Sea,We studied the variability of the Kuroshio in the East China Sea(ECS) in the period of 1991 to 2008 using a three-dimensional circulation model,and calculated Kuroshio onshore volume transport in the ECS at the minimum of 0.48 Sv(1 Sv ;106 m3/s) in summer and the maximum of 1.69 Sv in winter.Based on the data of WOA05 and NCEP,The modeled result indicates that the Kuroshio transport east of Taiwan Island decreased since 2000.Lateral movements tended to be stronger at two ends of the Kuroshio in the ECS than that of the middle segment.In addition,we applied a spectral mixture model(SMM) to determine the exchange zone between the Kuroshio and the shelf water of the ECS.The result reveals a significantly negative correlation(coefficient of-0.78) between the area of exchange zone and the Kuroshio onshore transport at 200 m isobath in the ECS.This conclusion brings a new view for the water exchange between the Kuroshio and the East China Sea.Additional to annual and semi-annual signals,intra-seasonal signal of probably the Pacific origin may trigger the events of Kuroshio intrusion and exchange in the ECS.
基金financial support from the Ningbo Science and Technology Bureau and the Ningbo Oceanology and Fishery Bureau for Technology and Research of Marine Ecological Environmental Protection and Restoration of Xiangshan Bay (No. 2006C 10030)
文摘Xiangshan bay is a narrow semi-closed bay and situated on the northwestern coast of the East China Sea. Over past decades, it has become to a major bay with intensive human activities, dense urbanized area, and poor water quality. The aim of this paper was to reveal the ecological status through the elucidation of the species composition, abundance, biomass and diversity of macrobenthos in this bay. Six intertidal sections were surveyed from January 2007 to November 2008 quarterly. Sections TG, HD and XH are located in the three inner bays, sections QJ and WS are located near the thermal power plants, and section XX is located at the outer part of Xiangshan Bay. Great variations in macrobenthos community were indentified, and the species composition of the community in the present study showed the dominance in the order of molluscs (bivalves and gastropods), crustaceans and others, and only few Polychaeta were recorded. Only three dominant species, Littorina brevicula, llyplax tansuiensis, and Cerithidea cingu- lata were collected in all the sections, and a total of 19 dominant species were recorded only in one section. Two-way ANOVA analyses of abundance indicated that there were significant differences among sections or seasons. Shannon-Wiener diversity index (H') had its maximum (2.45) in section QJ, and minimum (1.76) in section TG Multiple irregular k-dominance plots clearly showed that the study area was polluted and the macrobenthos community was under stress. We conclude that the macrobenthos of Xiang- shan Bay have been disturbed by human activities, especially at the interior bay.
基金Supported by the National Natural Science Foundation of China(Nos.41430965,41376057)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11030302)
文摘The Okinawa Trough is a natural laboratory for the study of air-sea interaction and paleoenvironmental change. It has been demonstrated that present offshore export of particles in the bottom nepheloid layer occur primarily with downwelling from the northeast winter monsoon, which is inhibited by a transverse circulation pattern in summer. This current system was very different during the Last Glacial Maximum owing to low sea level (-120 m) and exposure of a large shelf area. We collected sediment core Oki01 from the middle Okinawa Trough during 2012 using R/V Kexue No. 1 to elucidate the timing and cause of the current system transition in the East China Sea. Clay mineral, dry density, and elemental (Ti, Ca) composition of core Oki01 was analyzed. The results indicate that clay minerals derived mainly from the Huanghe (Yellow) and the Changjiang (Yangtze) Rivers during 16.0-11.6 ka, and the modem current system in the East China Sea formed beginning in the early Holocene. Therefore, mixing of East China Sea continental shelf, Changjiang River and partially Taiwan Island sediment are the major contributors. The decrease of log(Ti/Ca) and alternating provenance since the early Holocene indicate less sediment from the East China in summer because of resistance of the modern current system, i.e., a "water barrier" and upwelling. Conversely, sediment delivery persists in winter and log(Ti/Ca) indicates the winter monsoon signal since the early Holocene. Our evidence also suggests that sediment from Taiwan Island could be transported by the Kuroshio Current to the middle Okinawa Trough, where it mingles with winter monsoon- induced export of sediment from the Changjiang River and East China Sea continental shelf. Although the present research advances understanding of the evolutionary history of paleoenvironmental change in the Okinawa Trough, more sediment cores should be retrieved over wide areas to construct a larger scenario.
基金supported by the National Natural Science Foundation of China (NSFC) (41175006)‘973 Program’(2012CB955602) and the Ministry of Education (MOE)(20090132110008)
文摘This review presents some of the latest achievements in sea fog research,including fog climatology,fog structure in the marine atmospheric boundary layer,and numerical simulations and forecasting of fog.With the development of atmospheric observational techniques and equipments,new facts about sea fog are revealed.The mechanisms involved in the formation,development and dissipation of sea fog are further explored with the help of advanced atmospheric models.
基金supported by the National Basic Research Program of China (2007CB411807)the National Natural Science Foundation of China (40806072,41176009)
文摘The available data on tidal currents spanning periods greater than six months for the continental shelf of the East China Sea (26°30.052′N, 122°35.998′E) were analyzed using several methods. Tidal Current Harmonic Analysis results demonstrated that semi-diurnal tides dominated the current movement. The tidal currents of the principal diurnal and semidiurnal rotated clockwise with depth, with the deflection of the major semi-axes to the right in the upper layer and to the left in the lower layer. The vertical structures of two principal semi-diurnal constituents-M2 and S2-were similar, which indicates that the tidal currents are mainly barotropic in this area. The main features of the variation of the four principal tidal constituents with depth demonstrate that the currents in this region are influenced by the upper and lower boundary layers. Therefore, the tidal constituents of the shallow water are similar. Different vertical modes were calculated based on the Empirical Orthogonal Function (EOF) analysis of the Eastern and Northern components of the tidal currents, with a variance contribution for the zero-order model of at least 90%. The variance contribution of the baroclinic model is minimal, which further reveals a strong barotropic character for the tidal currents of this region.