In this paper we study a quasi-linear hyperbolic system, with some integral operators, arising from an atmospheric model on the transition of water. By using the method of characteristics and a fixed point argument, w...In this paper we study a quasi-linear hyperbolic system, with some integral operators, arising from an atmospheric model on the transition of water. By using the method of characteristics and a fixed point argument, we prove a theorem of existence, uniqueness and continuous dependence on data, in Lipschitz class, of the solution to this problem.展开更多
In previous evacuation flow planning, a system optimal dynamic traffic assignment(SODTA) did not consider the exogenous costs caused by potential traffic accidents. A traffic accident,which might occur as a result of ...In previous evacuation flow planning, a system optimal dynamic traffic assignment(SODTA) did not consider the exogenous costs caused by potential traffic accidents. A traffic accident,which might occur as a result of traffic congestion, will impact an evacuation process because of accidentrelated delays experienced by the downstream vehicles. This paper establishes a safety-based SO-DTA linear programming model in which the generalized system cost incorporates both the travel time and the accident-related delay. The goal is to minimize the generalized system cost under the cell transmission setup. Furthermore, the authors provide strategic guidance information that considers both the objective of the decision maker and the route choice behavior of the evacuees. Mathematically,the authors propose an unconstrained non-linear programming model aimed at minimizing the gap between the safety-based flows and the stochastic real-world evacuation flows, to provide strategic travel time information to be published on variable message signs(VMS). In the case study, the authors found that the safety-based SO-DTA model can reduce congestion and improve the evacuation efficiency; the stochastic real-world evacuation flows, guided by strategic information, can approach the safety-based flows.展开更多
We have constructed explicit nonautonomous soliton solutions of the generalized nonlinear Sehr6dinger equation in the (3+ 1 )-dimensionM inhomogeneous cubic-quintic nonlinear medium. The gain parameter has no effec...We have constructed explicit nonautonomous soliton solutions of the generalized nonlinear Sehr6dinger equation in the (3+ 1 )-dimensionM inhomogeneous cubic-quintic nonlinear medium. The gain parameter has no effects on the motion of the soliton's phase or their velocities, and it affects just the evolution of their peaks. As two examples, we discuss the propagation of nonautonomous solitons in the periodic distributed amplification system and the exponential dispersion decreasing system. Results show that the presence of the chirp not only makes the intensity of solitons weaken more promptly, but also broadens their width.展开更多
文摘In this paper we study a quasi-linear hyperbolic system, with some integral operators, arising from an atmospheric model on the transition of water. By using the method of characteristics and a fixed point argument, we prove a theorem of existence, uniqueness and continuous dependence on data, in Lipschitz class, of the solution to this problem.
基金supported by the National Natural Science Foundation of China under Grant Nos.51408321,51078086,51278101Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20120092110043
文摘In previous evacuation flow planning, a system optimal dynamic traffic assignment(SODTA) did not consider the exogenous costs caused by potential traffic accidents. A traffic accident,which might occur as a result of traffic congestion, will impact an evacuation process because of accidentrelated delays experienced by the downstream vehicles. This paper establishes a safety-based SO-DTA linear programming model in which the generalized system cost incorporates both the travel time and the accident-related delay. The goal is to minimize the generalized system cost under the cell transmission setup. Furthermore, the authors provide strategic guidance information that considers both the objective of the decision maker and the route choice behavior of the evacuees. Mathematically,the authors propose an unconstrained non-linear programming model aimed at minimizing the gap between the safety-based flows and the stochastic real-world evacuation flows, to provide strategic travel time information to be published on variable message signs(VMS). In the case study, the authors found that the safety-based SO-DTA model can reduce congestion and improve the evacuation efficiency; the stochastic real-world evacuation flows, guided by strategic information, can approach the safety-based flows.
基金Supported by the National Natural Science Foundation of China under Grant No.11005092the Program for Innovative Research Team of Young Teachers in Zhejiang Agriculture and Forestry University under Grant No.2009RC01+1 种基金the Scientific Research and Developed Fund under Grant No.2009FK42the Student Research Training Program under Grant No.201101101 of Zhejiang Agriculture and Forestry University
文摘We have constructed explicit nonautonomous soliton solutions of the generalized nonlinear Sehr6dinger equation in the (3+ 1 )-dimensionM inhomogeneous cubic-quintic nonlinear medium. The gain parameter has no effects on the motion of the soliton's phase or their velocities, and it affects just the evolution of their peaks. As two examples, we discuss the propagation of nonautonomous solitons in the periodic distributed amplification system and the exponential dispersion decreasing system. Results show that the presence of the chirp not only makes the intensity of solitons weaken more promptly, but also broadens their width.