In order to imitate skin characteristics, a dielectric elastomer (DE) membrane coated with flexible electrodes is applied with high voltage, which can lead to wrinkles and other phenomena. To develop soft-actuated air...In order to imitate skin characteristics, a dielectric elastomer (DE) membrane coated with flexible electrodes is applied with high voltage, which can lead to wrinkles and other phenomena. To develop soft-actuated air vehicles and other equipment, lightweight gas is pumped into a DE spherical shell to generate controllable flight movements. According to experimental phenomena and data, the calculation models of phase transitions on circular DE films are built. Meanwhile, the deformation characteristics of different DE (acrylic polymer and rubber) spherical actuators combined with helium are compared. The peak pressure inside a rubber balloon is greater than that of a VHB (acrylic polymer) balloon shell, but the limit stretch of rubber is much smaller. By taking advantages of this phenomenon, large deformations of a VHB spherical shell can be realized at an actuated state. Moreover, multi-layer spherical DE shells can achieve larger voltage-induced volume change than monolayer ones. The research indicates that pre-stretching is one of the key factors to induce phase transitions between flat, wrinkled and bulging regions on circular DE films, and the internal pressure determines the electromechanical performance of balloon actuators.展开更多
基金The National Natural Science Foundation of China(No.51775108)
文摘In order to imitate skin characteristics, a dielectric elastomer (DE) membrane coated with flexible electrodes is applied with high voltage, which can lead to wrinkles and other phenomena. To develop soft-actuated air vehicles and other equipment, lightweight gas is pumped into a DE spherical shell to generate controllable flight movements. According to experimental phenomena and data, the calculation models of phase transitions on circular DE films are built. Meanwhile, the deformation characteristics of different DE (acrylic polymer and rubber) spherical actuators combined with helium are compared. The peak pressure inside a rubber balloon is greater than that of a VHB (acrylic polymer) balloon shell, but the limit stretch of rubber is much smaller. By taking advantages of this phenomenon, large deformations of a VHB spherical shell can be realized at an actuated state. Moreover, multi-layer spherical DE shells can achieve larger voltage-induced volume change than monolayer ones. The research indicates that pre-stretching is one of the key factors to induce phase transitions between flat, wrinkled and bulging regions on circular DE films, and the internal pressure determines the electromechanical performance of balloon actuators.