Hydraulic fracturing is one of the efficient means for the abundant low-permeability CBM (coal-bed methane) reserves in China, however, due to the unique features of coal seams (i.e., low temperature, strong adsorp...Hydraulic fracturing is one of the efficient means for the abundant low-permeability CBM (coal-bed methane) reserves in China, however, due to the unique features of coal seams (i.e., low temperature, strong adsorption and abnormal development of natural fracture systems) as compared with the conventional reservoirs, the fractures propagate is difficult and the risk of damage to coal seam itself and the hydraulic fractures would be extremely high in the course of fracturing. As a result, losses would be suffered on the post-frac production of CBM wells.With the mean of numerical simulation, in this paper, the main factors have impact on the post-frac results as well as the extent to which the impact is brought were researched, and the technical solutions for the improvement of the fracturing performance was put forwards.展开更多
Arc-soft-toe bracket(ASTB), as a joint structure in the marine structure, is the hot spot with significant stress concentration, therefore, fatigue behavior of ASTBs is an important point of concern in their design. S...Arc-soft-toe bracket(ASTB), as a joint structure in the marine structure, is the hot spot with significant stress concentration, therefore, fatigue behavior of ASTBs is an important point of concern in their design. Since macroscopic geometric factors obviously influence the stress flaws in joints, the shapes and sizes of ASTBs should represent the stress distribution around cracks in the hot spots. In this paper, we introduce a geometric magnification factor for reflecting the macroscopic geometric effects of ASTB crack features and construct a 3D finite element model to simulate the distribution of stress intensity factor(SIF) at the crack endings. Sensitivity analyses with respect to the geometric ratio Ht/Lb, R/Lb, Lt/Lb are performed, and the relations between the geometric factor and these parameters are presented. A set of parametric equations with respect to the geometric magnification factor is obtained using a curve fitting technique. A nonlinear relationship exists between the SIF and the ratio of ASTB arm to toe length. When the ratio of ASTB arm to toe length reaches a marginal value, the SIF of crack at the ASTB toe is not influenced by ASTB geometric parameters. In addition, the arc shape of the ASTB slope edge can transform the stress flowing path, which significantly affects the SIF at the ASTB toe. A proper method to reduce stress concentration is setting a slope edge arc size equal to the ASTB arm length.展开更多
文摘Hydraulic fracturing is one of the efficient means for the abundant low-permeability CBM (coal-bed methane) reserves in China, however, due to the unique features of coal seams (i.e., low temperature, strong adsorption and abnormal development of natural fracture systems) as compared with the conventional reservoirs, the fractures propagate is difficult and the risk of damage to coal seam itself and the hydraulic fractures would be extremely high in the course of fracturing. As a result, losses would be suffered on the post-frac production of CBM wells.With the mean of numerical simulation, in this paper, the main factors have impact on the post-frac results as well as the extent to which the impact is brought were researched, and the technical solutions for the improvement of the fracturing performance was put forwards.
基金supported by the National Natural Science Foundation of China (NSFC) (Nos. 51490675 and 11572300)the Natural Science Foundation of Shandong Province (NSFSD) (No. ZR2015EM025)the Fundamental Research Fund for Central Universities (Ocean University of China)
文摘Arc-soft-toe bracket(ASTB), as a joint structure in the marine structure, is the hot spot with significant stress concentration, therefore, fatigue behavior of ASTBs is an important point of concern in their design. Since macroscopic geometric factors obviously influence the stress flaws in joints, the shapes and sizes of ASTBs should represent the stress distribution around cracks in the hot spots. In this paper, we introduce a geometric magnification factor for reflecting the macroscopic geometric effects of ASTB crack features and construct a 3D finite element model to simulate the distribution of stress intensity factor(SIF) at the crack endings. Sensitivity analyses with respect to the geometric ratio Ht/Lb, R/Lb, Lt/Lb are performed, and the relations between the geometric factor and these parameters are presented. A set of parametric equations with respect to the geometric magnification factor is obtained using a curve fitting technique. A nonlinear relationship exists between the SIF and the ratio of ASTB arm to toe length. When the ratio of ASTB arm to toe length reaches a marginal value, the SIF of crack at the ASTB toe is not influenced by ASTB geometric parameters. In addition, the arc shape of the ASTB slope edge can transform the stress flowing path, which significantly affects the SIF at the ASTB toe. A proper method to reduce stress concentration is setting a slope edge arc size equal to the ASTB arm length.