Given an odd-periodic algebraic triangulated category, we compare Bridgeland's Hall algebra in the sense of Bridgeland(2013) and Gorsky(2014), and the derived Hall algebra in the sense of Ten(2006), Xiao and Xu(20...Given an odd-periodic algebraic triangulated category, we compare Bridgeland's Hall algebra in the sense of Bridgeland(2013) and Gorsky(2014), and the derived Hall algebra in the sense of Ten(2006), Xiao and Xu(2008) and Xu and Chen(2013), and show that the former one is the twisted form of the tensor product of the latter one and a suitable group algebra.展开更多
Let n = p1p2 ··· pk, where pi(1 ≤ i ≤ k) are primes in the descending order and are not all equal. Let Ωk(n) = P(p1 + p2)P(p2 + p3) ··· P(pk-1+ pk)P(pk+ p1), where P(n) is the largest ...Let n = p1p2 ··· pk, where pi(1 ≤ i ≤ k) are primes in the descending order and are not all equal. Let Ωk(n) = P(p1 + p2)P(p2 + p3) ··· P(pk-1+ pk)P(pk+ p1), where P(n) is the largest prime factor of n. Define w0(n) = n and wi(n) = w(wi-1(n)) for all integers i ≥ 1. The smallest integer s for which there exists a positive integer t such thatΩs k(n) = Ωs+t k(n) is called the index of periodicity of n. The authors investigate the index of periodicity of n.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11301533 and 11471177)
文摘Given an odd-periodic algebraic triangulated category, we compare Bridgeland's Hall algebra in the sense of Bridgeland(2013) and Gorsky(2014), and the derived Hall algebra in the sense of Ten(2006), Xiao and Xu(2008) and Xu and Chen(2013), and show that the former one is the twisted form of the tensor product of the latter one and a suitable group algebra.
基金supported by the National Natural Science Foundation of China(Nos.11371195,11471017)the Youth Foundation of Mathematical Tianyuan of China(No.11126302)the Project of Graduate Education Innovation of Jiangsu Province(No.CXZZ12-0381)
文摘Let n = p1p2 ··· pk, where pi(1 ≤ i ≤ k) are primes in the descending order and are not all equal. Let Ωk(n) = P(p1 + p2)P(p2 + p3) ··· P(pk-1+ pk)P(pk+ p1), where P(n) is the largest prime factor of n. Define w0(n) = n and wi(n) = w(wi-1(n)) for all integers i ≥ 1. The smallest integer s for which there exists a positive integer t such thatΩs k(n) = Ωs+t k(n) is called the index of periodicity of n. The authors investigate the index of periodicity of n.