The intense deformation zone in the central Indian Ocean, south of Indian continent is one of the most complex regions in terms of its structure and geodynamics. The deformation zone has been studied and debated in 19...The intense deformation zone in the central Indian Ocean, south of Indian continent is one of the most complex regions in terms of its structure and geodynamics. The deformation zone has been studied and debated in 1990s for its genesis. It was argued that deformation is mainly confined to sedimentary and oceanic crustal layers, while the large wave length geoidal anomalies, on which the deformation region lies, called for deeper sources. The inter connection between deeper and the shallower sources is found missing. The current study focuses on the complexities of this region by analyzing OBS (ocean bottom seismometer) data. The data acquired by five OBS systems along a 300 km long south-north profile in the CIOB (central Indian Ocean basin) have been modeled and the crustal and sub-crustal structure has been determined using 2-D tomographic inversion. Four subsurface layers are identified representing the sediment column, upper crustal layer, lower crustal layer and a sub-crustal layer (upper mantle layer). A considerable variation in thickness as well as velocity at all interfaces from sedimentary column to upper mantle is observed which indicates that the tectonic forces have affected the entire crust and sub-crustal configuration. The sediments are characterized by higher velocities (2.1 kin/s) due to the increased confining pressure. Modeling results indicated that the velocity in upper crust is in the range of 5.7-6.2 km/s and the velocity of the lower crust varies from 7.0-7.6 km/s. The velocity of the sub-crustal layer is in the range of 7.8-8.4 km/s. This high-velocity layer is interpreted as magmatic under-plating with strong lateral variations. The base of the 7.0 km/s layer at 12-15 km depth is interpreted as the Moho.展开更多
The paper studies the ground vertical deformation and the geoid undulation caused by loading of neighboring buildings, based on the loading tides theory. The influence on elevation is also considered. The results show...The paper studies the ground vertical deformation and the geoid undulation caused by loading of neighboring buildings, based on the loading tides theory. The influence on elevation is also considered. The results show that the ground vertical deformation and the geoid undulation both reach millimeter magnitude. Therefore, it is obvious that the building loading significantly affects the precise engineering surveying, and it must be seriously considered in application.展开更多
文摘The intense deformation zone in the central Indian Ocean, south of Indian continent is one of the most complex regions in terms of its structure and geodynamics. The deformation zone has been studied and debated in 1990s for its genesis. It was argued that deformation is mainly confined to sedimentary and oceanic crustal layers, while the large wave length geoidal anomalies, on which the deformation region lies, called for deeper sources. The inter connection between deeper and the shallower sources is found missing. The current study focuses on the complexities of this region by analyzing OBS (ocean bottom seismometer) data. The data acquired by five OBS systems along a 300 km long south-north profile in the CIOB (central Indian Ocean basin) have been modeled and the crustal and sub-crustal structure has been determined using 2-D tomographic inversion. Four subsurface layers are identified representing the sediment column, upper crustal layer, lower crustal layer and a sub-crustal layer (upper mantle layer). A considerable variation in thickness as well as velocity at all interfaces from sedimentary column to upper mantle is observed which indicates that the tectonic forces have affected the entire crust and sub-crustal configuration. The sediments are characterized by higher velocities (2.1 kin/s) due to the increased confining pressure. Modeling results indicated that the velocity in upper crust is in the range of 5.7-6.2 km/s and the velocity of the lower crust varies from 7.0-7.6 km/s. The velocity of the sub-crustal layer is in the range of 7.8-8.4 km/s. This high-velocity layer is interpreted as magmatic under-plating with strong lateral variations. The base of the 7.0 km/s layer at 12-15 km depth is interpreted as the Moho.
文摘The paper studies the ground vertical deformation and the geoid undulation caused by loading of neighboring buildings, based on the loading tides theory. The influence on elevation is also considered. The results show that the ground vertical deformation and the geoid undulation both reach millimeter magnitude. Therefore, it is obvious that the building loading significantly affects the precise engineering surveying, and it must be seriously considered in application.