We calculated and analyzed variation of the non-dipole(ND)magnetic field at the millennium scale over the Chinese mainland during 2000 BC–1900 AD using the newest global geomagnetic model,CALS3K.4(3K.4).The newest-ge...We calculated and analyzed variation of the non-dipole(ND)magnetic field at the millennium scale over the Chinese mainland during 2000 BC–1900 AD using the newest global geomagnetic model,CALS3K.4(3K.4).The newest-generation IGRF(IGRF11)was used to verify the results.Taking component Z for example,we calculated and analyzed the distribution and annual change rates of the ND field during 1900–1990 AD every 5 yr,using two models.To thoroughly analyze the contributions of field sources,quadrupole and octupole fields,and others within the ND field at the surface and core-mantle boundary(CMB)were investigated.Results show that there were three main variation phases of the field during the period 2000BC–1900 AD.The mean amplitude roughly reflected the ND field because of the distribution and variation of that field,corresponding somewhat to the mean amplitude change.A magnetic anomaly of the ND field over East Asia(EA)first emerged in 1682 AD,and its extreme intensity had increased a total of 15276.95 nT by 1900 AD.Its location moved continuously southeastward after 1690 AD.The asymmetry between location and intensity of extreme points over EA,particularly during1740–1760 AD,indicates irregularity of fluid motion inside the outer core.Mean annual changes of Z are generally divided into four phases,which first oscillated between 2000 and 800 BC,then increased,decreased and increased in the periods 800BC–300 AD,300–900 AD and 900–1900 AD,respectively.The intensity of mean annual change increased a total of 22.87nT/yr.Anomaly extreme locations based on 3K.4 and IGRF11 over EA centered around 44°N and 103°E for degree(n)greater than 5,and intensities continuously increased with n.During 2000 BC–1990 AD,ND energy of Z at the surface and CMB had decreased in total by 18.29%and 23.23%,respectively.The field source of 26–210 pole fields are more or less affected by the lithospheric field.Energies of higher degree at the surface attenuate by almost 99%compared with CMB,but mean attenuation speeds of the low-degree ND field are faster than high-degree,which implies that the low-degree ND field has a deeper source.展开更多
Regional gravity field modeling with high-precision and high-resolution is one of the most important scientific objectives in geodesy, and can provide fundamental information for geophysics, geodynamics, seismology, a...Regional gravity field modeling with high-precision and high-resolution is one of the most important scientific objectives in geodesy, and can provide fundamental information for geophysics, geodynamics, seismology, and mineral exploration. Rectangular harmonic analysis (RHA) is proposed for regional gravity field modeling in this paper. By solving the Laplace's equation of gravitational potential in local Cartesian coordinate system, the rectangular harmonic expansions of disturbing potential, gravity anomaly, gravity disturbance, geoid undulation and deflection of the vertical are derived, and so are the formula for signal degree variance and error degree variance of the rectangular harmonic coefficients (RHC). We also present the mathematical model and detailed algorithm for the solution of RHC using RHA from gravity observations. In order to reduce the edge effects caused by periodic continuation in RHA, we propose the strategy of extending the size of computation domain. The RHA-based modeling method is validated by conducting numerical experiments based on simulated ground and airborne gravity data that are generated from geopotential model EGM2008 and contaminated by Gauss white noise with standard deviation of 2 mGal. The accuracy of the 2.5'×2.5' geoid undulations computed from ground and airborne gravity data is 1 and 1.4 cm, respectively. The standard error of the gravity disturbances that downward continued from the flight height of 4 km to the geoid is only 3.1 reGal. Numerical results confirm that RHA is able to provide a reliable and accurate regional gravity field model, which may be a new option for the representation of the fine structure of regional gravity field.展开更多
Soybean was domesticated in China and has become one of the most important oilseed crops. Due to bottlenecks in their introduction and dissemination, soybeans from different geographic areas exhibit extensive genetic ...Soybean was domesticated in China and has become one of the most important oilseed crops. Due to bottlenecks in their introduction and dissemination, soybeans from different geographic areas exhibit extensive genetic diversity. Asia is the largest soybean market; therefore, a high-quality soybean reference genome from this area is critical for soybean research and breeding.Here, we report the de novo assembly and sequence analysis of a Chinese soybean genome for "Zhonghuang 13" by a combination of SMRT, Hi-C and optical mapping data. The assembled genome size is 1.025 Gb with a contig N50 of 3.46 Mb and a scaffold N50 of 51.87 Mb. Comparisons between this genome and the previously reported reference genome(cv. Williams82) uncovered more than 250,000 structure variations. A total of 52,051 protein coding genes and 36,429 transposable elements were annotated for this genome, and a gene co-expression network including 39,967 genes was also established. This high quality Chinese soybean genome and its sequence analysis will provide valuable information for soybean improvement in the future.展开更多
High-precision(±0.1 ppm) and high-frequency(hourly averaged) in situ measurements of atmospheric carbon dioxide(CO2) were made for the first time from August 2005 to July 2007 at Yanbian,China using a non-dispers...High-precision(±0.1 ppm) and high-frequency(hourly averaged) in situ measurements of atmospheric carbon dioxide(CO2) were made for the first time from August 2005 to July 2007 at Yanbian,China using a non-dispersive Infrared(NDIR) analyzer with National Oceanic and Atmospheric Administration/Earth System Research Laboratory(NOAA/ESRL) standards.The results of these measurements are presented in this paper and are used to investigate the regional representativeness of regional background data at Yanbian and determine the CO2 emission source regions in Northeast Asia.The phase of the monthly variations at Yanbian reflects the special regional characteristics,which were overall in excellent agreement with other observatories in the middle-to-high latitudes in the Northern Hemisphere.Applying a hybrid receptor model to the regional emission source events in cold period(November-April),we estimated the distribution of the major CO2 emissions in the northeast Asia.The results indicated that the strongest potential emission areas contributing to Yanbian are the Beijing & Tianjin metropolitan areas,southwestern part of Shandong Province including Jinan,and Vladivostok.The results of this study reveal the usefulness of in situ CO2 measurements at Yanbian in establishing the scientific foundation for monitoring the large CO2 emission areas in northern China and Russia.Continued monitoring of CO2 at Yanbian within a regional network should provide significant contributions to both understanding the global/regional carbon cycle and constraining "top-down" emissions in Northeast Asia.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41174165)Special Project for Meteo-scientific Research in the Public Interest(Grant No.GYHY201306073-2,GYHY200906033)Science Research Project of NUIST(Grant No.20110420)
文摘We calculated and analyzed variation of the non-dipole(ND)magnetic field at the millennium scale over the Chinese mainland during 2000 BC–1900 AD using the newest global geomagnetic model,CALS3K.4(3K.4).The newest-generation IGRF(IGRF11)was used to verify the results.Taking component Z for example,we calculated and analyzed the distribution and annual change rates of the ND field during 1900–1990 AD every 5 yr,using two models.To thoroughly analyze the contributions of field sources,quadrupole and octupole fields,and others within the ND field at the surface and core-mantle boundary(CMB)were investigated.Results show that there were three main variation phases of the field during the period 2000BC–1900 AD.The mean amplitude roughly reflected the ND field because of the distribution and variation of that field,corresponding somewhat to the mean amplitude change.A magnetic anomaly of the ND field over East Asia(EA)first emerged in 1682 AD,and its extreme intensity had increased a total of 15276.95 nT by 1900 AD.Its location moved continuously southeastward after 1690 AD.The asymmetry between location and intensity of extreme points over EA,particularly during1740–1760 AD,indicates irregularity of fluid motion inside the outer core.Mean annual changes of Z are generally divided into four phases,which first oscillated between 2000 and 800 BC,then increased,decreased and increased in the periods 800BC–300 AD,300–900 AD and 900–1900 AD,respectively.The intensity of mean annual change increased a total of 22.87nT/yr.Anomaly extreme locations based on 3K.4 and IGRF11 over EA centered around 44°N and 103°E for degree(n)greater than 5,and intensities continuously increased with n.During 2000 BC–1990 AD,ND energy of Z at the surface and CMB had decreased in total by 18.29%and 23.23%,respectively.The field source of 26–210 pole fields are more or less affected by the lithospheric field.Energies of higher degree at the surface attenuate by almost 99%compared with CMB,but mean attenuation speeds of the low-degree ND field are faster than high-degree,which implies that the low-degree ND field has a deeper source.
基金jointly supported by the National Basic Research Program of China (Grant No. 2013CB733301)the National Science and Technology Support Program of China (Grant No. 2012BAB16B01)+1 种基金the National Natural Science Foundation of China (Grant No. 41204008)the Basic Research Program of National Administration of Surveying, Mapping and Geoinformation of China
文摘Regional gravity field modeling with high-precision and high-resolution is one of the most important scientific objectives in geodesy, and can provide fundamental information for geophysics, geodynamics, seismology, and mineral exploration. Rectangular harmonic analysis (RHA) is proposed for regional gravity field modeling in this paper. By solving the Laplace's equation of gravitational potential in local Cartesian coordinate system, the rectangular harmonic expansions of disturbing potential, gravity anomaly, gravity disturbance, geoid undulation and deflection of the vertical are derived, and so are the formula for signal degree variance and error degree variance of the rectangular harmonic coefficients (RHC). We also present the mathematical model and detailed algorithm for the solution of RHC using RHA from gravity observations. In order to reduce the edge effects caused by periodic continuation in RHA, we propose the strategy of extending the size of computation domain. The RHA-based modeling method is validated by conducting numerical experiments based on simulated ground and airborne gravity data that are generated from geopotential model EGM2008 and contaminated by Gauss white noise with standard deviation of 2 mGal. The accuracy of the 2.5'×2.5' geoid undulations computed from ground and airborne gravity data is 1 and 1.4 cm, respectively. The standard error of the gravity disturbances that downward continued from the flight height of 4 km to the geoid is only 3.1 reGal. Numerical results confirm that RHA is able to provide a reliable and accurate regional gravity field model, which may be a new option for the representation of the fine structure of regional gravity field.
基金supported by the National Natural Science Foundation of China (91531304, 31525018, 31370266, and 31788103)the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA08000000)the State Key Laboratory of Plant Cell and Chromosome Engineering (PCCE-KF-2017-03)
文摘Soybean was domesticated in China and has become one of the most important oilseed crops. Due to bottlenecks in their introduction and dissemination, soybeans from different geographic areas exhibit extensive genetic diversity. Asia is the largest soybean market; therefore, a high-quality soybean reference genome from this area is critical for soybean research and breeding.Here, we report the de novo assembly and sequence analysis of a Chinese soybean genome for "Zhonghuang 13" by a combination of SMRT, Hi-C and optical mapping data. The assembled genome size is 1.025 Gb with a contig N50 of 3.46 Mb and a scaffold N50 of 51.87 Mb. Comparisons between this genome and the previously reported reference genome(cv. Williams82) uncovered more than 250,000 structure variations. A total of 52,051 protein coding genes and 36,429 transposable elements were annotated for this genome, and a gene co-expression network including 39,967 genes was also established. This high quality Chinese soybean genome and its sequence analysis will provide valuable information for soybean improvement in the future.
基金supported by National Research Foundation of Korea (NRF) funded by the Korea government (MEST) (Grant No.2010-0029119)
文摘High-precision(±0.1 ppm) and high-frequency(hourly averaged) in situ measurements of atmospheric carbon dioxide(CO2) were made for the first time from August 2005 to July 2007 at Yanbian,China using a non-dispersive Infrared(NDIR) analyzer with National Oceanic and Atmospheric Administration/Earth System Research Laboratory(NOAA/ESRL) standards.The results of these measurements are presented in this paper and are used to investigate the regional representativeness of regional background data at Yanbian and determine the CO2 emission source regions in Northeast Asia.The phase of the monthly variations at Yanbian reflects the special regional characteristics,which were overall in excellent agreement with other observatories in the middle-to-high latitudes in the Northern Hemisphere.Applying a hybrid receptor model to the regional emission source events in cold period(November-April),we estimated the distribution of the major CO2 emissions in the northeast Asia.The results indicated that the strongest potential emission areas contributing to Yanbian are the Beijing & Tianjin metropolitan areas,southwestern part of Shandong Province including Jinan,and Vladivostok.The results of this study reveal the usefulness of in situ CO2 measurements at Yanbian in establishing the scientific foundation for monitoring the large CO2 emission areas in northern China and Russia.Continued monitoring of CO2 at Yanbian within a regional network should provide significant contributions to both understanding the global/regional carbon cycle and constraining "top-down" emissions in Northeast Asia.