According to the characteristics of large underground caverns, by using the safety factor of surrounding rock mass point as the control standard of cavern stability, RandWPSO-LSSVM optimization feedback method and flo...According to the characteristics of large underground caverns, by using the safety factor of surrounding rock mass point as the control standard of cavern stability, RandWPSO-LSSVM optimization feedback method and flow process of large underground cavern anchor parameters were established. By applying the optimization feedback method to actual project, the best anchor parameters of large surge shaft five-tunnel area underground cavern of the Nuozhadu hydropower station were obtained through optimization. The results show that the predicted effect of LSSVM prediction model obtained through RandWPSO optimization is good, reasonable and reliable. Combination of the best anchor parameters obtained is 114131312, that is, the locked anchor bar spacing is 1 m x 1 m, pre-stress is 100 kN, elevation 580.45-586.50 m section anchor bar diameter is 36.00 mm, length is 4.50 m, spacing is 1.5 m × 2.5 m; anchor bar diameter at the five-tunnel area side wall is 25.00 mm, length is 7.50 m, spacing is 1 m× 1.5 m, and the shotcrete thickness is 0.15 m. The feedback analyses show that the optimization feedback method of large underground cavern anchor parameters is reasonable and reliable, which has important guiding significance for ensuring the stability of large underground caverns and for saving project investment.展开更多
A single-column model is constructed based on parameterizations inherited from the Finite-volume/Spectral Atmospheric Model F/SAMIL and tested in simulations of tropical convective systems. Two representative convecti...A single-column model is constructed based on parameterizations inherited from the Finite-volume/Spectral Atmospheric Model F/SAMIL and tested in simulations of tropical convective systems. Two representative convection schemes are compared in terms of their performances on precipitation types, individual physical tendencies, and temperature and moisture fields. The main difference between the two selected schemes is in their representation of entraining/detraining process. The Tiedtke scheme assumes bulk entrainment, while the Zhang–Mc Farlane scheme parameterizes entrainment/detrainment rates under the spectrum concept. Large-scale forcing and verification data are taken from the GATE phase III field campaign, during which abundant convective events were observed. Given the same triggering function and closure assumption, results show that entrainment/detrainment representation remains the dominant factor on the simulation of cumulus mass flux and of temperature and moisture fields. By analyzing sources and sinks of heat and moisture, this study reveals how parameterization components compensate for each other and make model results insensitive to parameterization changes in certain fields, thus suggesting the need to treat parameterizations as systems rather than individual components.展开更多
基金Project(50911130366) supported by the National Natural Science Foundation of China
文摘According to the characteristics of large underground caverns, by using the safety factor of surrounding rock mass point as the control standard of cavern stability, RandWPSO-LSSVM optimization feedback method and flow process of large underground cavern anchor parameters were established. By applying the optimization feedback method to actual project, the best anchor parameters of large surge shaft five-tunnel area underground cavern of the Nuozhadu hydropower station were obtained through optimization. The results show that the predicted effect of LSSVM prediction model obtained through RandWPSO optimization is good, reasonable and reliable. Combination of the best anchor parameters obtained is 114131312, that is, the locked anchor bar spacing is 1 m x 1 m, pre-stress is 100 kN, elevation 580.45-586.50 m section anchor bar diameter is 36.00 mm, length is 4.50 m, spacing is 1.5 m × 2.5 m; anchor bar diameter at the five-tunnel area side wall is 25.00 mm, length is 7.50 m, spacing is 1 m× 1.5 m, and the shotcrete thickness is 0.15 m. The feedback analyses show that the optimization feedback method of large underground cavern anchor parameters is reasonable and reliable, which has important guiding significance for ensuring the stability of large underground caverns and for saving project investment.
基金jointly supported by the National Natural Science Foundation of China(41305102)the National Basic Research Program of China(2014CB441202,2013CB955803)
文摘A single-column model is constructed based on parameterizations inherited from the Finite-volume/Spectral Atmospheric Model F/SAMIL and tested in simulations of tropical convective systems. Two representative convection schemes are compared in terms of their performances on precipitation types, individual physical tendencies, and temperature and moisture fields. The main difference between the two selected schemes is in their representation of entraining/detraining process. The Tiedtke scheme assumes bulk entrainment, while the Zhang–Mc Farlane scheme parameterizes entrainment/detrainment rates under the spectrum concept. Large-scale forcing and verification data are taken from the GATE phase III field campaign, during which abundant convective events were observed. Given the same triggering function and closure assumption, results show that entrainment/detrainment representation remains the dominant factor on the simulation of cumulus mass flux and of temperature and moisture fields. By analyzing sources and sinks of heat and moisture, this study reveals how parameterization components compensate for each other and make model results insensitive to parameterization changes in certain fields, thus suggesting the need to treat parameterizations as systems rather than individual components.