针对大型H型垂直轴风力机,分析其气动载荷并阐述主轴偏振效应的产生机理,并利用双制动盘多流管(DMST)获得垂直轴风力机全方位角下变桨距规律。鉴于变桨后合成力均值发生变化,提出采用变异系数来评价主轴合成力振荡幅度。研究结果表明:...针对大型H型垂直轴风力机,分析其气动载荷并阐述主轴偏振效应的产生机理,并利用双制动盘多流管(DMST)获得垂直轴风力机全方位角下变桨距规律。鉴于变桨后合成力均值发生变化,提出采用变异系数来评价主轴合成力振荡幅度。研究结果表明:风剪效应下风轮旋转过程中,气流对叶片的作用力合成到主轴位置上会产生大小不一的周期性变化。以获取最大切向力系数为目标,得到上下风区的最佳理论攻角为19°和-19°。实时变桨能有效降低主轴偏振效应,其变异系数由0.118降为0.109,降低了8.26%,同时,单个叶片的平均切向力由16.2 k N提高到17.5 kN,提高了约8.02%。展开更多
文摘针对大型H型垂直轴风力机,分析其气动载荷并阐述主轴偏振效应的产生机理,并利用双制动盘多流管(DMST)获得垂直轴风力机全方位角下变桨距规律。鉴于变桨后合成力均值发生变化,提出采用变异系数来评价主轴合成力振荡幅度。研究结果表明:风剪效应下风轮旋转过程中,气流对叶片的作用力合成到主轴位置上会产生大小不一的周期性变化。以获取最大切向力系数为目标,得到上下风区的最佳理论攻角为19°和-19°。实时变桨能有效降低主轴偏振效应,其变异系数由0.118降为0.109,降低了8.26%,同时,单个叶片的平均切向力由16.2 k N提高到17.5 kN,提高了约8.02%。