期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于Simufact的大型钢结构架体焊接变形模拟分析与预测 被引量:8
1
作者 黄新宇 李宁 《热加工工艺》 北大核心 2019年第21期147-152,共6页
为能够实现大型钢结构架体焊接变形的数值模拟,对架体的焊接特点进行了分析,简化分析模型,根据现有计算能力和容量确定有限元网格划分方法,建立了准确的热源模型,并完成大型钢结构架体焊接变形的模拟分析,实现了在特定焊接工艺条件下大... 为能够实现大型钢结构架体焊接变形的数值模拟,对架体的焊接特点进行了分析,简化分析模型,根据现有计算能力和容量确定有限元网格划分方法,建立了准确的热源模型,并完成大型钢结构架体焊接变形的模拟分析,实现了在特定焊接工艺条件下大型钢结构架体变形的准确预测。 展开更多
关键词 大型结构 焊接变形 模型简化 热源模型
下载PDF
气候环境实验室超大型门体结构保温与密封设计 被引量:1
2
作者 任战鹏 吴敬涛 吴学敏 《山西建筑》 2019年第10期46-48,共3页
为解决气候环境实验室超大型门体结构的保温与密封问题,提出了变轨运行、单轨排布的门体布局设计以及双重充气密封结构设计,成功解决了高/低温环境下实验室大门的保温与密封问题,有效降低了实验室能耗。
关键词 实验室 大型结构 保温
下载PDF
浅谈大型筒体结构端口焊接坡口的加工方法
3
作者 王雪松 《船舶物资与市场》 2019年第5期53-54,共2页
众所周知,一对大型筒体对接焊接前,需要在端面加工坡口,提高焊接质量,由于筒体的圆度、壁厚存有误差,焊接坡口的加工方法尤为重要。由于手工打磨方法从效率和精度控制上,对满足工件质量要求相差较多,端口的平面度、坡口的圆度、表面质... 众所周知,一对大型筒体对接焊接前,需要在端面加工坡口,提高焊接质量,由于筒体的圆度、壁厚存有误差,焊接坡口的加工方法尤为重要。由于手工打磨方法从效率和精度控制上,对满足工件质量要求相差较多,端口的平面度、坡口的圆度、表面质量难以保证,采用金切设备,加工质量好,便于控制,但在筒体端面上如何装卡却是个难题,主要难点有:装卡的可靠性、切削的连续性、可仿形性、占用空间小等。笔者经认真研究工件所处的工况,考虑切削力、装卡紧固度、仿形等因素总结出加工方案。 展开更多
关键词 大型结构 焊接坡口 加工
下载PDF
声全息测量距离选取问题的研究
4
作者 肖魁 《赤峰学院学报(自然科学版)》 2012年第11期3-5,共3页
为研究声全息测量中水下大型结构体的测量距离选取问题,首先分析了水下大型结构体的声场分布,然后针对声场中三个不同区域声压量的衰减特点,选择不同的测量面位置重建声场.仿真数据分析结果表明:在测量面由菲涅尔区向远场方向移动过程中... 为研究声全息测量中水下大型结构体的测量距离选取问题,首先分析了水下大型结构体的声场分布,然后针对声场中三个不同区域声压量的衰减特点,选择不同的测量面位置重建声场.仿真数据分析结果表明:在测量面由菲涅尔区向远场方向移动过程中,当测量面位于过渡区时,声压重建误差曲线快速下降.所以对于水下大型结构体来说,要获得一定的声场重建精度和分辨率,测量面应该选择在其声场的过渡区域中. 展开更多
关键词 声全息 测量距离 大型结构体 菲涅尔区
下载PDF
Hydroelastic Analysis of a Very Large Floating Structure Edged with a Pair of Submerged Horizontal Plates 被引量:2
5
作者 MA Zhe CHENG Yong +1 位作者 ZHAI Gangjun OU Jinping 《Journal of Ocean University of China》 SCIE CAS 2015年第2期228-236,共9页
This paper is concerned with the hydroelastic problem of a very large pontoon-type floating structure(VLFS) edged with a pair of submerged horizontal plates, which is a combination of perforated and non-perforated pla... This paper is concerned with the hydroelastic problem of a very large pontoon-type floating structure(VLFS) edged with a pair of submerged horizontal plates, which is a combination of perforated and non-perforated plates attached to the for-end and back-end of the VLFS. For the hydroelastic analysis, the fluid is assumed to be ideal and its motion is irrotational so that a velocity potential exists. The VLFS is modeled as an elastic plate according to the classical thin plate theory. The fluid-structure interaction problem is separated into conventional hydrodynamics and structure dynamics by using modal expansion method in the frequency-domain. It involves, firstly, the deflection of the VLFS, which is expressed by a superposition of modal functions and corresponding modal amplitudes. Then the boundary element method is used to solve the integral equations of diffraction and radiation on the body surface for the velocity potential, whereas the vibration equation is solved by the Galerkin's method for modal amplitudes, and then the deflection is obtained by the sum of multiplying modal functions with modal amplitudes. This study examines the effects of the width and location of the non-perforated horizontal plates on the hydroelastic response of the VLFS, then the performance of perforated plates is investigated to reduce the motion near the fore-end of the VLFS. Considering the advantages and disadvantages of submerged plates without and with cylindrical holes, we propose a simple anti-motion device, which is a combination of a pair of perforated and non-perforated plates attached to the for-end and back-end of the VLFS. The effectiveness of this device in reducing the deformation and bending moment of the VLFS has been confirmed, and is compared with the results in cases without and with the submerged horizontal plates by the analysis in this paper. 展开更多
关键词 VLFS anti-motion device hydroelastic problems perforate horizontal plate submerged horizontal plate
下载PDF
Time Domain Calculation of Connector Loads of a Very Large Floating Structure 被引量:3
6
作者 Jiayang Gu Jie Wu +2 位作者 Enrong Qi Yifeng Guan Yubo Yuan 《Journal of Marine Science and Application》 CSCD 2015年第2期183-188,共6页
Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision... Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision and wave loads are considered to establish motion differential equations for a multi-body VLFS. A time domain calculation method is proposed to calculate the connector load of the VLFS in waves. The Longuet-Higgins model is employed to simulate the stochastic wave load. Fluid force and hydrodynamic coefficient are obtained with DNV Sesam software. The motion differential equation is calculated by applying the time domain method when the frequency domain hydrodynamic coefficient is converted into the memory function of the motion differential equation of the time domain. As a result of the combined action of wave and impact loads, high-frequency oscillation is observed in the time history curve of the connector load. At wave directions of 0° and 75°, the regularities of the time history curves of the connector loads in different directions are similar and the connector loads of C1 and C2 in the X direction are the largest. The oscillation load is observed in the connector in the Y direction at a wave direction of 75° and not at 0° This paper presents a time domain calculation method of connector load to provide a certain reference function for the future development of Chinese VLFS 展开更多
关键词 very large floating structures (VLFSs) time domainmotion differential equation COLLISION CONNECTOR impact load hydrodynamic coefficient oscillation load impact load
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部