Objective The optic nerve is a key component regarding research on visual prosthesis.Previous pharmacological and electrical studies has pinned down the main features of the mechanisms underlying the nerve impulse in ...Objective The optic nerve is a key component regarding research on visual prosthesis.Previous pharmacological and electrical studies has pinned down the main features of the mechanisms underlying the nerve impulse in the rat optic nerve,and this work proposed a mathematical model to simulate these phenomena.Methods The main active nodal channels:fast Na^+,persistent Na^,slow K^+ and a fast repolarizing K^+(A-current)were added on a double layer representation of the axon.A simplified representation of K^+ accumulation and clearance in the vicinity of the Ranvier node was integrated in this model.Results The model was able to generate the following features.In the presence of 4-aminopyridine (4-AP),spike duration increased and a depolarizing afterpotential(DAP)appeared.In the presence of 4-AP and tetraethylammonium(TEA),the DAP was followed by a hyperpolarizing afterpotential(AHP)and the amplitude of this AHP increased with the frequency of the stimulation.In normal conditions(no drugs):DAP and AHP were absent after a single action potential(AP)and a short train of AP;there was a relative refractoriness in amplitude lasting for 30 ms after an AP;an early AHP was revealed by a continuous depolarizing current;and there was a partial spike adaptation for a long current step stimulus.Conclusion The model successfully reproduced previous experiments results including long-lasting stimulation experiment,which is known to modify nerve physiological parameter values and is a key issue for visual prosthesis research.展开更多
The techniques of stress relief mining in low-permeability coal seams and pillarless gob side retained roadway entry using Y-type ventilation and gas drainage systems were developed to control gas outbursts and applie...The techniques of stress relief mining in low-permeability coal seams and pillarless gob side retained roadway entry using Y-type ventilation and gas drainage systems were developed to control gas outbursts and applied successfully. However, as the mining depth increasing, parts of the gas drainage system are not suitable for mines with high gas emissions. Because larger mining depths cause higher ground stresses, it becomes extremely difficult to maintain long gob side roadways. The greater deformation suffered by the roadway is not favorable lor borehole drilling for continuous gas drainage. To solve these problems, Y-type ventilation and gas drainage systems installed from a roof roadway were designed for drainage optimization. This system was designed based on a gas-enrichment zone analysis developed from mining the 11-2 coal seam in the Zhuji Mine at Huainan, Anhui Province, China. The method of Y-type gas extraction from different mine areas was applied to the panel 1112(1) in the Zhuji Mine. The absolute gas emission rate was up to 116.3 m^3/min with an average flow of 69.1 m^3/min at an average drainage concentration of nearly 85 %. After the Y-type method was adopted, the concentration of gas in the return air was 0.15 %-0.64 %, averaging 0.39 % with a ventilation rate of 2100-2750 m^3/min. The gas management system proved to be efficient, and the effective gas control allowed safe production to continue .展开更多
To solve the problem of color distortion after dehazing in the sky region by using the classical dark channel prior method to process the hazy images with large regions of sky,an improved dark channel image dehazing m...To solve the problem of color distortion after dehazing in the sky region by using the classical dark channel prior method to process the hazy images with large regions of sky,an improved dark channel image dehazing method based on Gaussian mixture model is proposed.Firstly,we use the Gaussian mixture model to model the hazy image,and then use the expectation maximization(EM)algorithm to optimize the parameters,so that the hazy image can be divided into the sky region and the non-sky region.Secondly,the sky region is divided into a light haze region,a medium haze region and a heavy haze region according to the different dark channel values to estimate the transmission respectively.Thirdly,the restored image is obtained by combining the atmospheric scattering model.Finally,adaptive local tone mapping for high dynamic range images is used to adjust the brightness of the restored image.The experimental results show that the proposed method can effectively eliminate the color distortion in the sky region,and the restored image is clearer and has better visual effect.展开更多
AIM: To identify and compare the profile of Ca^2+ channel subunit expression in INS-1 and rat pancreatic β cells.METHODS: The rat insulin-secreting INS-1 cell line was cultured in RPMI-1640 with Wistar rats employ...AIM: To identify and compare the profile of Ca^2+ channel subunit expression in INS-1 and rat pancreatic β cells.METHODS: The rat insulin-secreting INS-1 cell line was cultured in RPMI-1640 with Wistar rats employed as islet donors. Ca^2+ channel subunit expression in INS-1 and isolated rat β cells were examined by reverse transcription polymerase chain reaction (RT-PCR). Absolute real-time quantitative PCR was performed in a Bio-Rad iQ5 Gradient Real Time PCR system and the data analyzed using an iQ5 system to identify the expression level of the Ca^2+ channel subunits. RESULTS: In INS-1 cells, the L-type Ca^2+ channel 1C subunit had the highest expression level and the TPRM2 subunit had the second highest expression. In rat β cells, the TPRC4β subunit expression was dominant and the expression of the L-type lC subunit exceeded the 1D subunit expression about two-fold. This result agreed with other studies, confirming the important role of the L-type lC subunit in insulinsecreting cells, and suggested that non-voltage-operated Ca^2+ channels may have an important role in biphasic insulin secretion. CONCLUSION: Twelve major Ca^2+ channel subunit types were identified in INS-1 and rat β cells and significant differences were observed in the expression of certain subunits between these cells.展开更多
It is proposed in the subduction channel model that the plate interface interaction is a basic mechanism for the mass and energy exchange between Earth’s surface and interior.The significant difference in composition...It is proposed in the subduction channel model that the plate interface interaction is a basic mechanism for the mass and energy exchange between Earth’s surface and interior.The significant difference in composition and nature between continental lithosphere and oceanic lithosphere inevitably leads to variations in deep physical and chemical processes as well as crust-mantle interaction products in these two settings.Many studies of experimental petrology have provided constraints on the potential partial melting and crust-mantle interaction in oceanic subduction channels for silicate and carbonate rocks.The partial melts of mafic and felsic compositions are adakitic or non-adakitic granitic melts depending on melting pressure or depth.A trivial amount of CO2 can lower significantly the melting temperature of peridotites and lead to pronounced enrichment of incompatible elements in carbonate melt.The silica saturated or unsaturated melts can react with mantle-wedge peridotites in subduction channels to generate complex products.However,the existing experiments are mostly dedicated to island arc settings above oceanic subduction zones rather than dehydration melting above continental subduction zones.It is crucial to conduct high pressure and high temperature experiments to investigate all possible reactions between peridotites and crustal materials and their derivatives under the conditions responsible for the slab-mantle interface in continental subduction channels.Experimental results,combined with natural observations,are possible to elucidate the processes of metamorphic dehydration,partial melting and mantle metasomatism in continental subduction channels.展开更多
基金the National Basic Research Development Program of China(973 Program)(No.2005CB724302);the National Natural Science Foundation of China(No.60588101);Shanghai Science and Technology Commission(No.05DZ22318,No.04DZ05114).
文摘Objective The optic nerve is a key component regarding research on visual prosthesis.Previous pharmacological and electrical studies has pinned down the main features of the mechanisms underlying the nerve impulse in the rat optic nerve,and this work proposed a mathematical model to simulate these phenomena.Methods The main active nodal channels:fast Na^+,persistent Na^,slow K^+ and a fast repolarizing K^+(A-current)were added on a double layer representation of the axon.A simplified representation of K^+ accumulation and clearance in the vicinity of the Ranvier node was integrated in this model.Results The model was able to generate the following features.In the presence of 4-aminopyridine (4-AP),spike duration increased and a depolarizing afterpotential(DAP)appeared.In the presence of 4-AP and tetraethylammonium(TEA),the DAP was followed by a hyperpolarizing afterpotential(AHP)and the amplitude of this AHP increased with the frequency of the stimulation.In normal conditions(no drugs):DAP and AHP were absent after a single action potential(AP)and a short train of AP;there was a relative refractoriness in amplitude lasting for 30 ms after an AP;an early AHP was revealed by a continuous depolarizing current;and there was a partial spike adaptation for a long current step stimulus.Conclusion The model successfully reproduced previous experiments results including long-lasting stimulation experiment,which is known to modify nerve physiological parameter values and is a key issue for visual prosthesis research.
基金Acknowledgments This work was supported by the National Nat- ural Science Foundation of China (41172147), the Anhui Province Science and Technology Research Plan (12010402110), and the Shanxi Province One Hundred Distinguished Professor Plan project.
文摘The techniques of stress relief mining in low-permeability coal seams and pillarless gob side retained roadway entry using Y-type ventilation and gas drainage systems were developed to control gas outbursts and applied successfully. However, as the mining depth increasing, parts of the gas drainage system are not suitable for mines with high gas emissions. Because larger mining depths cause higher ground stresses, it becomes extremely difficult to maintain long gob side roadways. The greater deformation suffered by the roadway is not favorable lor borehole drilling for continuous gas drainage. To solve these problems, Y-type ventilation and gas drainage systems installed from a roof roadway were designed for drainage optimization. This system was designed based on a gas-enrichment zone analysis developed from mining the 11-2 coal seam in the Zhuji Mine at Huainan, Anhui Province, China. The method of Y-type gas extraction from different mine areas was applied to the panel 1112(1) in the Zhuji Mine. The absolute gas emission rate was up to 116.3 m^3/min with an average flow of 69.1 m^3/min at an average drainage concentration of nearly 85 %. After the Y-type method was adopted, the concentration of gas in the return air was 0.15 %-0.64 %, averaging 0.39 % with a ventilation rate of 2100-2750 m^3/min. The gas management system proved to be efficient, and the effective gas control allowed safe production to continue .
基金National Natural Science Foundation of China(Nos.61841303,61963023)Project of Humanities and Social Sciences of Ministry of Education in China(No.19YJC760012)。
文摘To solve the problem of color distortion after dehazing in the sky region by using the classical dark channel prior method to process the hazy images with large regions of sky,an improved dark channel image dehazing method based on Gaussian mixture model is proposed.Firstly,we use the Gaussian mixture model to model the hazy image,and then use the expectation maximization(EM)algorithm to optimize the parameters,so that the hazy image can be divided into the sky region and the non-sky region.Secondly,the sky region is divided into a light haze region,a medium haze region and a heavy haze region according to the different dark channel values to estimate the transmission respectively.Thirdly,the restored image is obtained by combining the atmospheric scattering model.Finally,adaptive local tone mapping for high dynamic range images is used to adjust the brightness of the restored image.The experimental results show that the proposed method can effectively eliminate the color distortion in the sky region,and the restored image is clearer and has better visual effect.
基金Supported by The Tsinghua-Yue-Yuan Medical Science Fund,No20240000568
文摘AIM: To identify and compare the profile of Ca^2+ channel subunit expression in INS-1 and rat pancreatic β cells.METHODS: The rat insulin-secreting INS-1 cell line was cultured in RPMI-1640 with Wistar rats employed as islet donors. Ca^2+ channel subunit expression in INS-1 and isolated rat β cells were examined by reverse transcription polymerase chain reaction (RT-PCR). Absolute real-time quantitative PCR was performed in a Bio-Rad iQ5 Gradient Real Time PCR system and the data analyzed using an iQ5 system to identify the expression level of the Ca^2+ channel subunits. RESULTS: In INS-1 cells, the L-type Ca^2+ channel 1C subunit had the highest expression level and the TPRM2 subunit had the second highest expression. In rat β cells, the TPRC4β subunit expression was dominant and the expression of the L-type lC subunit exceeded the 1D subunit expression about two-fold. This result agreed with other studies, confirming the important role of the L-type lC subunit in insulinsecreting cells, and suggested that non-voltage-operated Ca^2+ channels may have an important role in biphasic insulin secretion. CONCLUSION: Twelve major Ca^2+ channel subunit types were identified in INS-1 and rat β cells and significant differences were observed in the expression of certain subunits between these cells.
基金supported by the National Basic Research Program of China(Grant No.2015CB856101)the National Natural Science Foundation of China(Grant Nos.41172070,41425012)the Ministry of Education of China and the State Administration of Foreign Expert Affairs of China(Grant No.B07039)
文摘It is proposed in the subduction channel model that the plate interface interaction is a basic mechanism for the mass and energy exchange between Earth’s surface and interior.The significant difference in composition and nature between continental lithosphere and oceanic lithosphere inevitably leads to variations in deep physical and chemical processes as well as crust-mantle interaction products in these two settings.Many studies of experimental petrology have provided constraints on the potential partial melting and crust-mantle interaction in oceanic subduction channels for silicate and carbonate rocks.The partial melts of mafic and felsic compositions are adakitic or non-adakitic granitic melts depending on melting pressure or depth.A trivial amount of CO2 can lower significantly the melting temperature of peridotites and lead to pronounced enrichment of incompatible elements in carbonate melt.The silica saturated or unsaturated melts can react with mantle-wedge peridotites in subduction channels to generate complex products.However,the existing experiments are mostly dedicated to island arc settings above oceanic subduction zones rather than dehydration melting above continental subduction zones.It is crucial to conduct high pressure and high temperature experiments to investigate all possible reactions between peridotites and crustal materials and their derivatives under the conditions responsible for the slab-mantle interface in continental subduction channels.Experimental results,combined with natural observations,are possible to elucidate the processes of metamorphic dehydration,partial melting and mantle metasomatism in continental subduction channels.