Aim To screen the optimum macroporous resin and conditions for the isolation and purification of flavonoids from Radix Puerariae. Methods The static and dynamic adsorption/desorption methods were used, and the separat...Aim To screen the optimum macroporous resin and conditions for the isolation and purification of flavonoids from Radix Puerariae. Methods The static and dynamic adsorption/desorption methods were used, and the separation and purification process was evaluated by measuring the concentration of total flavonoid in the fractions with UV spectrophotometer. Results The SP70 macroporous resin was the most effective compared with other macroporous resins. The optimum conditions were screened, which were 0.5 g· mL^- 1 corresponding to crude drug for concentration of extract, pH 5 - 6, and appended 60 times the volume of the resin bed (BV) with the adsorption speed 2 BV·h^-1, and the volume of aq. 70% (V/V) ethanol as eluant was 5 BV with desorption speed 2 BV·h^-1. By this method, the final contents of total flavonoids exceeded 80%. Conclusion The SP70 macroporous resin is the most effective one for large-scale isolation and purification of flavonoids from Radix Pueraria, which meets industrial needs.展开更多
Aim To optimize purification conditions of recombinant hirudin 3 in thefermentation broth and characterize the product. Methods Reambinant hirudin 3 was isolated andpurified from the fermentation broth by three column...Aim To optimize purification conditions of recombinant hirudin 3 in thefermentation broth and characterize the product. Methods Reambinant hirudin 3 was isolated andpurified from the fermentation broth by three column chromatography steps with macroporous resin,DEAE cellulose DES2 and preparative RP-HPLC, respectively, and the optimal conditions were obtained.Purity of the product was determined by SDS-PAGE and analytical RP-HPLC. The molecular weight wasdetermined by mass spec-trometry. The structure of the product was analyzed by peptide map.ResultsThe product with purity of 95.4786% was obtained after three purification steps in the optimumconditions with a total yield of 39%. The molecular weight of the product was 6 913.32 ± 6.55 Da,coincident to the theoretical molecular weight of r-hirudin 3. The structure of the product wascoincident to r-hirudin 3 either. Conclusion The optimized purification steps can be successfullyemployed for purification of r-hirudin 3 from E. coli using batch-type approaches. The productobtained with high purity was confirmed to be r-hirudin 3.展开更多
[Objective] This study was conducted to develop a method for rapidly separating macranthoidin B and dipsacoside B from Flos Lonicerae. [Method] HP-20 and HP-SS macroporous resin were applied to separate and purify mac...[Objective] This study was conducted to develop a method for rapidly separating macranthoidin B and dipsacoside B from Flos Lonicerae. [Method] HP-20 and HP-SS macroporous resin were applied to separate and purify macranthoidin B and dipsacoside B from Flos Lonicerae. The extract of Flos Lonicerae was first loaded onto an HP-20 column to enrich saponins, which were then separated by an HP-SS macroporous resin column to get pure macranthoidin B and dipsacoside B.[Result] The optimal HP-20 purification conditions included: a concentration of sample liquid at 4.8 mg/ml, a sample volume of 2 BV, an adsorption flow rate at 1.5BV/h, an ethanol concentration for desorption at 60%, a desorption volume of 3 BV,and a desorption flow rate at 1.5 BV/h. Total saponins were then separated by an HP-SS macroporous resin column which was eluted sequentially by water, 20%ethanol, 30% ethanol, 40% ethanol and 50% ethanol. Two purified compounds were obtained in fractions eluted by 40% ethanol and 50% ethanol, respectively. The two compounds were identified as macranthoidin B and dipsacoside B by13 C and1H nuclear magnetic resonance spectroscopy. [Conclusion] The combination of HP-20 and HP-SS macroporous resin could efficiently separate macranthoidin B and dipsacoside B from Flos Lonicerae.展开更多
Flavonoids are one main kind of effective components in Houttuynia cordata Thunb., which display a wide range of pharmacological activity. In this study supercritical fluid extraction (SFE) with carbon dioxide was f...Flavonoids are one main kind of effective components in Houttuynia cordata Thunb., which display a wide range of pharmacological activity. In this study supercritical fluid extraction (SFE) with carbon dioxide was first used as preparat ion step to remove the volatile components, which are also active components, from Hout-tuynia cordata Thunb. Then ultrasound-assisted extraction was used to obtain the crude flavonoids and the macro-porous resin adsorption technology was further employed to purify the flavonoids. Nine kinds of macroporous resins with different properties were tested through static adsorption, and one macroporous resin labeled as D101 was selected. The effect of several factors, such as the ratio of column height to diameter, initial concentration and pH, on both flavonoids yield and content were explored by dynamic adsorption to obtain reasonable conditions of adsorption and desorption. The experimental results show that the content of fiavonoids can be above 60% with fia- vonoids recovery of 93.3 % under the optimum conditions of purification. HPLC analysis of the final flavonoids product shows it contains quercitrin, hypefin, rutin and quercetin.展开更多
Polyphenols from the ethanol extracts of Sargassum tenerrimum (ST) with potent antiallergic effects were studied to optimize separation process through column chromatography. The adsorption and desorption characteri...Polyphenols from the ethanol extracts of Sargassum tenerrimum (ST) with potent antiallergic effects were studied to optimize separation process through column chromatography. The adsorption and desorption characteristics of three widely used adsorbents: macroporous resin, silica gel, and polyvinylpolypyrrolidone (PVPP), were critically evaluated respectively and studied for the optimization of preparative separation of polyphenols. Static operations on these adsorbents showed that macroporous resin had the best adsorption and desorption capability among the three adsorbents. Dynamic adsorption and desorption with macroporous resin packed column were also conducted to optimize the parameters such as: with the optimal values shown in brackets, the concen- tration of extract solution (4 times diluted), pH value (6-7), adsorption speed (3BVh-1, bed volumes/per hour), concentration of ethanol (80%), elution speed (3 BV ht) and elution volume (7 BV). The chromatographic process so optimized gave a purity of 62.43% from the crude polyphenols, providing a promising basis for large scale preparation of bioactive polyphenols upon further scaling up tests.展开更多
[Objective] The aim of this study was to investigate the decolorization ef- fects of activated carbon and macroporous resin on Periplaneta americana L. skimmed cream and compare the advantages and disadvantages of the...[Objective] The aim of this study was to investigate the decolorization ef- fects of activated carbon and macroporous resin on Periplaneta americana L. skimmed cream and compare the advantages and disadvantages of the two decolorization technologies. [Method] Periplaneta americana L. skimmed cream was decolored with activated carbon and macroporous resin, and freeze-dried to collect solid decolorization products. By investigating the yield, decolorization rate, protein retention rate and decolorization operation process, the advantages and disadvantages of the two decolorization technologies were compared. [Result] Both activated carbon and macroporous resin can be used for decolorization. To be specific, macroporous resin-decolorization is superior in the yield and protein retention rate, while activated carbon-decolorization is superior in decolorization rate and decolorization operation process. [Conclusion] Macroporous resin-decolorization can be used if protein is the main ingredient required in the experiment, while activated carbon-decolorization can be used if protein is not the main ingredient required.展开更多
The influences of medium pH sorption temperature, sorption time, etc. on thesorption capacity of macroporous Phosphonic acid resin for La3+ were determined Thesorption rate constant was k298 = 7.64×10-5 s-1. The ...The influences of medium pH sorption temperature, sorption time, etc. on thesorption capacity of macroporous Phosphonic acid resin for La3+ were determined Thesorption rate constant was k298 = 7.64×10-5 s-1. The complex ratio of phosphonicgroups of the resin to La3+ was 3:1. The basic sorption parameters were determinedThe sorption mechanism of macroporous phosphonic acid resin for La3+ was examinedby chemical analysis and IR- spectrometry.展开更多
The adsorption properties of a novel macroporous weak acid resin (D152) for Pb^2+ were investigated with chemical methods. The optimal adsorption condition of D152 resin for Pb^2+ is at pH 6.00 in HAc-NaAc medium....The adsorption properties of a novel macroporous weak acid resin (D152) for Pb^2+ were investigated with chemical methods. The optimal adsorption condition of D152 resin for Pb^2+ is at pH 6.00 in HAc-NaAc medium. The statically saturated adsorption capacity is 527 mg/g at 298 K. Pb^2+ adsorbed on D152 resin can be eluted with 0.05 mol/L HCI quantitatively. The adsorption rate constants determined under various temperatures are k288 n=2.22×10-5 s^-1, k298 K=2.51 × 10^-5 s^-1, and k308 K= 2.95 × 10^-5 s^-1, respectively. The apparent activation energy, Ea is 10.5 kJ/mol, and the adsorption parameters of thermodynamics are ΔH^Θ=13.3 kJ/mol, ΔS^Θ=119 J/(mol·K), and ΔG^Θ298 K =-22.2 kJ/mol, respectively. The adsorption behavior of D152 resin for Pb^2+ follows Langmuir model.展开更多
The adsorption kinetics and mechanism of a novel chelate resin, macroporous phosphonic acid resin (PAR) for In(III) were investigated. The statically saturated adsorption capacity is 216mg穏-1resin at 298K in HAc-NaAc...The adsorption kinetics and mechanism of a novel chelate resin, macroporous phosphonic acid resin (PAR) for In(III) were investigated. The statically saturated adsorption capacity is 216mg穏-1resin at 298K in HAc-NaAc medium. The apparent adsorption rate constant is k298=4.84?0-5 s-1. The adsorption behavior of PAR for In(III) obeys the Freundlich isotherm. The thermodynamic adsorption parameters, enthalpy change △H, free energy change △G and entropy change △S of PAR for In(III) are 11.5kJ/mol, -12.6kJ/mol and 80.8J/mol稫, respectively. The apparent activation energy is Ea=3.5kJ/mol. The molar coordination ratio of the functional group of PAR to In(III) is about 3∶1.展开更多
The film diffusion mass-transfer process of adsorption of phenol on macroporous polystyrene resin was investigated in detail In order to revise the Boyd film diffusion kinetics equation, the out-surface structure of t...The film diffusion mass-transfer process of adsorption of phenol on macroporous polystyrene resin was investigated in detail In order to revise the Boyd film diffusion kinetics equation, the out-surface structure of the macroporous resin and that of gel-type ion-exchange resin was compared and the new film diffusion equation was also suggested. These results showed that the film diffusion was influenced by porosity of the macroporous resin greatly, which differed from the film diffusion behavior of ion-exchange resin obviously.展开更多
Homogeneous oxidation using an oil-soluble oxidant, tert-amyl hydroperoxide (TAHP), for ultra-deep desulfurization was performed under mild conditions in the presence of molybdenum oxide catalysts. Dibenzothio- phe...Homogeneous oxidation using an oil-soluble oxidant, tert-amyl hydroperoxide (TAHP), for ultra-deep desulfurization was performed under mild conditions in the presence of molybdenum oxide catalysts. Dibenzothio- phene (DBT), benzothiophene (BT) and 4, 6-dimethyl-dibenzothiophene (DMDBT), which are the refractory sulfur compounds for hydrodesulfurization (HDS), were employed as model substrates for a simulated diesel fuel. Activity of molybdenum oxide supported on a macroporous weak acidic resin was investigated. The mass conversion of DBT reached near 100% at 90℃ and a TAHP/DBT molar ratio of 3 with 1% of molybdenum oxide supported on Amberlite IRC-748 resin for 1 h. It was further found that the activities of the model substrates decreased in the or- der of DMDBT 〉DBT 〉BT. In the flow oxidation using TAHP as the oxidant, mass conversion of DBT increased remarkably from 61.3% to 98.5% when dropping the weight hourly space velocity (WHSV) from 40 h^-1 to 10 h^-1. A series of experiments dealt with selectivity of this oxidation using TAHP revealed that the model unsaturated compounds, i.e. 4, 6, 8-trimethyl-2-nonylene, and 2-methylnaphthalene did not affect the oxidation of DBT. Carbazole had nearly no effect on the conversion of DBT using TAHP, but had some influence on the one using tert-butyl hydroperoxide (TBHP). The mass conversion of DBT decreased remarkably from 75.2% to 3.6% when the content of carbazole increased from 0 to 500μg·g^-1. In the flow oxidation using TAHP as the oxidant, the concentration of DBT in model fuels was reduced from 500 μg·g^-1 to 7.2 μg·g^-1 at WHSV of 10 h^-1, and then reduced to 3.8 μg·g^-1 by adsorntion of Al2O3.展开更多
In the present study we prepared macroporous polyvinyl alcohol beads. A series of bilirubin adsorbents were generated by immobilization of eight amine agents to the beads as ligands. The adsorption of bilirubin was ev...In the present study we prepared macroporous polyvinyl alcohol beads. A series of bilirubin adsorbents were generated by immobilization of eight amine agents to the beads as ligands. The adsorption of bilirubin was evaluated by in vitro static and dynamic adsorption tests. The results show that these adsorbents have excellent adsorption efficiency and capacity. Among the eight ligands, trimethylamine (TMA), triethylamine (TEA) and 1,6- hexanediamine (HDA) showed the highest adsorption capacity. The adsorption equilibrium can be achieved in half an hour, and the adsorption percentage of bilirubin was up to 80%. Static electricity and hydrophobie interaction played the main role in bilirubin adsorption, and the adsorption was found to match the monolayer model. The excellent adsorption of these adsorbents indicates their potential in clinical treatment.展开更多
4,4’-diaminostilbene-2, 2’-disulfonic acid (DSD acid) manufacturing wastewater was treated by a macroporous resin in a fixed-bed column. The results showed that this method was suitable for removal of chemical oxyge...4,4’-diaminostilbene-2, 2’-disulfonic acid (DSD acid) manufacturing wastewater was treated by a macroporous resin in a fixed-bed column. The results showed that this method was suitable for removal of chemical oxygen demands (COD) and color. About 91% COD and 99.5% color removal were obtained under the optimum adsorption conditions, i.e. temperature 20℃, flow rate 1bed volume/hour (BV/hr) and pH1-2. The resin was efficiently regenerated with aqueous sodium hydroxide and water. Furthermore, 65.5% of 4,4’-dinitrostilbene-2, 2’-disulfonic acid (DNS) could be recovered from wastewater for possible recycling to the manufacturing process. The adsorption capacity of resin remained constant during the repetition process of adsorption and desorption.展开更多
The Solvated Metal Atom Impregnation (SMAI) technique was employed to prepare macroporous resin immobilized Pd--Cu bimetallic cluster catalysts. The X--ray diffraction (XRD) and transmission electron micrograph (TEM) ...The Solvated Metal Atom Impregnation (SMAI) technique was employed to prepare macroporous resin immobilized Pd--Cu bimetallic cluster catalysts. The X--ray diffraction (XRD) and transmission electron micrograph (TEM) showed that Pd--Cu alloy was formed and the particle sizes of Pd--Cu clusters were very small, with average diameters <3nm. X--ray photoelectron spectroscopy indicated that both Pd and Cu were in zero--valent state. The catalytic activities of the macroporous resin immobilized Pd--Cu catalysts in hydrogenation of 4--methyl--3--penten--2--one were much greater than that of the carbon supported Pd--Cu catalysts.展开更多
Porous materials have regular three-dimensional pore structure, which has unique advantages in the field of modern pharmaceutical. At present, porous materials commonly used in the pharmaceutical field are mainly mole...Porous materials have regular three-dimensional pore structure, which has unique advantages in the field of modern pharmaceutical. At present, porous materials commonly used in the pharmaceutical field are mainly molecular sieves, macroporous adsorbent resins, activated carbon, etc. In this paper, the application status of these porous materials in the pharmaceutical field is reviewed, and the future development is prospected.展开更多
基金Science and Technology Committee of Chongqing inChina(CSTC.2004BB5122).
文摘Aim To screen the optimum macroporous resin and conditions for the isolation and purification of flavonoids from Radix Puerariae. Methods The static and dynamic adsorption/desorption methods were used, and the separation and purification process was evaluated by measuring the concentration of total flavonoid in the fractions with UV spectrophotometer. Results The SP70 macroporous resin was the most effective compared with other macroporous resins. The optimum conditions were screened, which were 0.5 g· mL^- 1 corresponding to crude drug for concentration of extract, pH 5 - 6, and appended 60 times the volume of the resin bed (BV) with the adsorption speed 2 BV·h^-1, and the volume of aq. 70% (V/V) ethanol as eluant was 5 BV with desorption speed 2 BV·h^-1. By this method, the final contents of total flavonoids exceeded 80%. Conclusion The SP70 macroporous resin is the most effective one for large-scale isolation and purification of flavonoids from Radix Pueraria, which meets industrial needs.
文摘Aim To optimize purification conditions of recombinant hirudin 3 in thefermentation broth and characterize the product. Methods Reambinant hirudin 3 was isolated andpurified from the fermentation broth by three column chromatography steps with macroporous resin,DEAE cellulose DES2 and preparative RP-HPLC, respectively, and the optimal conditions were obtained.Purity of the product was determined by SDS-PAGE and analytical RP-HPLC. The molecular weight wasdetermined by mass spec-trometry. The structure of the product was analyzed by peptide map.ResultsThe product with purity of 95.4786% was obtained after three purification steps in the optimumconditions with a total yield of 39%. The molecular weight of the product was 6 913.32 ± 6.55 Da,coincident to the theoretical molecular weight of r-hirudin 3. The structure of the product wascoincident to r-hirudin 3 either. Conclusion The optimized purification steps can be successfullyemployed for purification of r-hirudin 3 from E. coli using batch-type approaches. The productobtained with high purity was confirmed to be r-hirudin 3.
基金Supported by Guangxi Scientific Research and Technological Development Planning Project(20130403-2)Technology Research and Development Program of Guangxi Province(GKH15104001-15)+1 种基金Special Fund for Bagui Scholars of the Guangxi Zhuang Autonomous RegionDirector Fund Project of Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization(ZRJJ2016-4)~~
文摘[Objective] This study was conducted to develop a method for rapidly separating macranthoidin B and dipsacoside B from Flos Lonicerae. [Method] HP-20 and HP-SS macroporous resin were applied to separate and purify macranthoidin B and dipsacoside B from Flos Lonicerae. The extract of Flos Lonicerae was first loaded onto an HP-20 column to enrich saponins, which were then separated by an HP-SS macroporous resin column to get pure macranthoidin B and dipsacoside B.[Result] The optimal HP-20 purification conditions included: a concentration of sample liquid at 4.8 mg/ml, a sample volume of 2 BV, an adsorption flow rate at 1.5BV/h, an ethanol concentration for desorption at 60%, a desorption volume of 3 BV,and a desorption flow rate at 1.5 BV/h. Total saponins were then separated by an HP-SS macroporous resin column which was eluted sequentially by water, 20%ethanol, 30% ethanol, 40% ethanol and 50% ethanol. Two purified compounds were obtained in fractions eluted by 40% ethanol and 50% ethanol, respectively. The two compounds were identified as macranthoidin B and dipsacoside B by13 C and1H nuclear magnetic resonance spectroscopy. [Conclusion] The combination of HP-20 and HP-SS macroporous resin could efficiently separate macranthoidin B and dipsacoside B from Flos Lonicerae.
文摘Flavonoids are one main kind of effective components in Houttuynia cordata Thunb., which display a wide range of pharmacological activity. In this study supercritical fluid extraction (SFE) with carbon dioxide was first used as preparat ion step to remove the volatile components, which are also active components, from Hout-tuynia cordata Thunb. Then ultrasound-assisted extraction was used to obtain the crude flavonoids and the macro-porous resin adsorption technology was further employed to purify the flavonoids. Nine kinds of macroporous resins with different properties were tested through static adsorption, and one macroporous resin labeled as D101 was selected. The effect of several factors, such as the ratio of column height to diameter, initial concentration and pH, on both flavonoids yield and content were explored by dynamic adsorption to obtain reasonable conditions of adsorption and desorption. The experimental results show that the content of fiavonoids can be above 60% with fia- vonoids recovery of 93.3 % under the optimum conditions of purification. HPLC analysis of the final flavonoids product shows it contains quercitrin, hypefin, rutin and quercetin.
基金supported by the National High Technology Research and Development Program ofChina (863 Program) (2006AA09Z427)NSFC (Nos. 30800859 and 30871948)
文摘Polyphenols from the ethanol extracts of Sargassum tenerrimum (ST) with potent antiallergic effects were studied to optimize separation process through column chromatography. The adsorption and desorption characteristics of three widely used adsorbents: macroporous resin, silica gel, and polyvinylpolypyrrolidone (PVPP), were critically evaluated respectively and studied for the optimization of preparative separation of polyphenols. Static operations on these adsorbents showed that macroporous resin had the best adsorption and desorption capability among the three adsorbents. Dynamic adsorption and desorption with macroporous resin packed column were also conducted to optimize the parameters such as: with the optimal values shown in brackets, the concen- tration of extract solution (4 times diluted), pH value (6-7), adsorption speed (3BVh-1, bed volumes/per hour), concentration of ethanol (80%), elution speed (3 BV ht) and elution volume (7 BV). The chromatographic process so optimized gave a purity of 62.43% from the crude polyphenols, providing a promising basis for large scale preparation of bioactive polyphenols upon further scaling up tests.
基金Supported by National Natural Science Foundation of China(30560181)~~
文摘[Objective] The aim of this study was to investigate the decolorization ef- fects of activated carbon and macroporous resin on Periplaneta americana L. skimmed cream and compare the advantages and disadvantages of the two decolorization technologies. [Method] Periplaneta americana L. skimmed cream was decolored with activated carbon and macroporous resin, and freeze-dried to collect solid decolorization products. By investigating the yield, decolorization rate, protein retention rate and decolorization operation process, the advantages and disadvantages of the two decolorization technologies were compared. [Result] Both activated carbon and macroporous resin can be used for decolorization. To be specific, macroporous resin-decolorization is superior in the yield and protein retention rate, while activated carbon-decolorization is superior in decolorization rate and decolorization operation process. [Conclusion] Macroporous resin-decolorization can be used if protein is the main ingredient required in the experiment, while activated carbon-decolorization can be used if protein is not the main ingredient required.
文摘The influences of medium pH sorption temperature, sorption time, etc. on thesorption capacity of macroporous Phosphonic acid resin for La3+ were determined Thesorption rate constant was k298 = 7.64×10-5 s-1. The complex ratio of phosphonicgroups of the resin to La3+ was 3:1. The basic sorption parameters were determinedThe sorption mechanism of macroporous phosphonic acid resin for La3+ was examinedby chemical analysis and IR- spectrometry.
基金Project(2008F70059) supported by the Scientific and Technological Research Planning of Zhejiang Province, China
文摘The adsorption properties of a novel macroporous weak acid resin (D152) for Pb^2+ were investigated with chemical methods. The optimal adsorption condition of D152 resin for Pb^2+ is at pH 6.00 in HAc-NaAc medium. The statically saturated adsorption capacity is 527 mg/g at 298 K. Pb^2+ adsorbed on D152 resin can be eluted with 0.05 mol/L HCI quantitatively. The adsorption rate constants determined under various temperatures are k288 n=2.22×10-5 s^-1, k298 K=2.51 × 10^-5 s^-1, and k308 K= 2.95 × 10^-5 s^-1, respectively. The apparent activation energy, Ea is 10.5 kJ/mol, and the adsorption parameters of thermodynamics are ΔH^Θ=13.3 kJ/mol, ΔS^Θ=119 J/(mol·K), and ΔG^Θ298 K =-22.2 kJ/mol, respectively. The adsorption behavior of D152 resin for Pb^2+ follows Langmuir model.
基金Zhoushan Science & Technology Bureau (No. 04114)
文摘The adsorption kinetics and mechanism of a novel chelate resin, macroporous phosphonic acid resin (PAR) for In(III) were investigated. The statically saturated adsorption capacity is 216mg穏-1resin at 298K in HAc-NaAc medium. The apparent adsorption rate constant is k298=4.84?0-5 s-1. The adsorption behavior of PAR for In(III) obeys the Freundlich isotherm. The thermodynamic adsorption parameters, enthalpy change △H, free energy change △G and entropy change △S of PAR for In(III) are 11.5kJ/mol, -12.6kJ/mol and 80.8J/mol稫, respectively. The apparent activation energy is Ea=3.5kJ/mol. The molar coordination ratio of the functional group of PAR to In(III) is about 3∶1.
文摘The film diffusion mass-transfer process of adsorption of phenol on macroporous polystyrene resin was investigated in detail In order to revise the Boyd film diffusion kinetics equation, the out-surface structure of the macroporous resin and that of gel-type ion-exchange resin was compared and the new film diffusion equation was also suggested. These results showed that the film diffusion was influenced by porosity of the macroporous resin greatly, which differed from the film diffusion behavior of ion-exchange resin obviously.
基金Supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘Homogeneous oxidation using an oil-soluble oxidant, tert-amyl hydroperoxide (TAHP), for ultra-deep desulfurization was performed under mild conditions in the presence of molybdenum oxide catalysts. Dibenzothio- phene (DBT), benzothiophene (BT) and 4, 6-dimethyl-dibenzothiophene (DMDBT), which are the refractory sulfur compounds for hydrodesulfurization (HDS), were employed as model substrates for a simulated diesel fuel. Activity of molybdenum oxide supported on a macroporous weak acidic resin was investigated. The mass conversion of DBT reached near 100% at 90℃ and a TAHP/DBT molar ratio of 3 with 1% of molybdenum oxide supported on Amberlite IRC-748 resin for 1 h. It was further found that the activities of the model substrates decreased in the or- der of DMDBT 〉DBT 〉BT. In the flow oxidation using TAHP as the oxidant, mass conversion of DBT increased remarkably from 61.3% to 98.5% when dropping the weight hourly space velocity (WHSV) from 40 h^-1 to 10 h^-1. A series of experiments dealt with selectivity of this oxidation using TAHP revealed that the model unsaturated compounds, i.e. 4, 6, 8-trimethyl-2-nonylene, and 2-methylnaphthalene did not affect the oxidation of DBT. Carbazole had nearly no effect on the conversion of DBT using TAHP, but had some influence on the one using tert-butyl hydroperoxide (TBHP). The mass conversion of DBT decreased remarkably from 75.2% to 3.6% when the content of carbazole increased from 0 to 500μg·g^-1. In the flow oxidation using TAHP as the oxidant, the concentration of DBT in model fuels was reduced from 500 μg·g^-1 to 7.2 μg·g^-1 at WHSV of 10 h^-1, and then reduced to 3.8 μg·g^-1 by adsorntion of Al2O3.
文摘In the present study we prepared macroporous polyvinyl alcohol beads. A series of bilirubin adsorbents were generated by immobilization of eight amine agents to the beads as ligands. The adsorption of bilirubin was evaluated by in vitro static and dynamic adsorption tests. The results show that these adsorbents have excellent adsorption efficiency and capacity. Among the eight ligands, trimethylamine (TMA), triethylamine (TEA) and 1,6- hexanediamine (HDA) showed the highest adsorption capacity. The adsorption equilibrium can be achieved in half an hour, and the adsorption percentage of bilirubin was up to 80%. Static electricity and hydrophobie interaction played the main role in bilirubin adsorption, and the adsorption was found to match the monolayer model. The excellent adsorption of these adsorbents indicates their potential in clinical treatment.
文摘4,4’-diaminostilbene-2, 2’-disulfonic acid (DSD acid) manufacturing wastewater was treated by a macroporous resin in a fixed-bed column. The results showed that this method was suitable for removal of chemical oxygen demands (COD) and color. About 91% COD and 99.5% color removal were obtained under the optimum adsorption conditions, i.e. temperature 20℃, flow rate 1bed volume/hour (BV/hr) and pH1-2. The resin was efficiently regenerated with aqueous sodium hydroxide and water. Furthermore, 65.5% of 4,4’-dinitrostilbene-2, 2’-disulfonic acid (DNS) could be recovered from wastewater for possible recycling to the manufacturing process. The adsorption capacity of resin remained constant during the repetition process of adsorption and desorption.
文摘The Solvated Metal Atom Impregnation (SMAI) technique was employed to prepare macroporous resin immobilized Pd--Cu bimetallic cluster catalysts. The X--ray diffraction (XRD) and transmission electron micrograph (TEM) showed that Pd--Cu alloy was formed and the particle sizes of Pd--Cu clusters were very small, with average diameters <3nm. X--ray photoelectron spectroscopy indicated that both Pd and Cu were in zero--valent state. The catalytic activities of the macroporous resin immobilized Pd--Cu catalysts in hydrogenation of 4--methyl--3--penten--2--one were much greater than that of the carbon supported Pd--Cu catalysts.
文摘Porous materials have regular three-dimensional pore structure, which has unique advantages in the field of modern pharmaceutical. At present, porous materials commonly used in the pharmaceutical field are mainly molecular sieves, macroporous adsorbent resins, activated carbon, etc. In this paper, the application status of these porous materials in the pharmaceutical field is reviewed, and the future development is prospected.