A min-max optimization method is proposed as a new approach to deal with the weight determination problem in the context of the analytic hierarchy process. The priority is obtained through minimizing the maximal absol...A min-max optimization method is proposed as a new approach to deal with the weight determination problem in the context of the analytic hierarchy process. The priority is obtained through minimizing the maximal absolute difference between the weight vector obtained from each column and the ideal weight vector. By transformation, the. constrained min- max optimization problem is converted to a linear programming problem, which can be solved using either the simplex method or the interior method. The Karush-Kuhn- Tucker condition is also analytically provided. These control thresholds provide a straightforward indication of inconsistency of the pairwise comparison matrix. Numerical computations for several case studies are conducted to compare the performance of the proposed method with three existing methods. This observation illustrates that the min-max method controls maximum deviation and gives more weight to non- dominate factors.展开更多
The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response un...The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.展开更多
Ten quantitative morphological characters were studied in 56 Morus alba L. trees representing three natural populations from the trans-Himalayan Ladakh region. The altitude of collection sites ranged from 2815 to 3177...Ten quantitative morphological characters were studied in 56 Morus alba L. trees representing three natural populations from the trans-Himalayan Ladakh region. The altitude of collection sites ranged from 2815 to 3177 m above the sea level(asl). Coefficient of variation(CV) showed high phenotypic variation in M. alba. Linear regression analysis revealed that leaf and fruit size decreases with an increase in altitude. High CV was observed for leaf length, leaf width, petiole length, leaf area, internodal distance, number of nodes, bud length, fruit length, fruit width and fruit weight. Similarly, a high phenotypic plasticity index was observed for bud length, leaf length, leaf width, petiole length, leaf area, inter-nodal distance, number of nodes, fruit length, fruit width and fruit weight. For every 100 m increase in altitude, leaf length, leaf width and leaf area decreased by 1 cm, 0.8 cm and 16.6 cm2, respectively. Analysis of covariance showed a predominant altitudinal effect on the morphological characters in comparison to the population effect. A small change in the altitude caused significant change in the plant morphological characteristics. The present investigation represents to our knowledge the first study addressing phenotypic variation in mulberryalong an altitudinal gradient.展开更多
Blocking is a large-scale, mid-latitude atmospheric anticyclone that splits the westerly into two jets and has a profound effect on local and regional climates. This study examined the seasonal, interannual, and decad...Blocking is a large-scale, mid-latitude atmospheric anticyclone that splits the westerly into two jets and has a profound effect on local and regional climates. This study examined the seasonal, interannual, and decadal variability of the Atlantic and Pacific blocking anticyclones in the Northern Hemisphere based on the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis data between 1958 and 1999. The preferred blocking region during these forty-two years was located over the Atlantic. Most blocking anticyclones over the Atlantic occurred in spring, while most of those over the Pacific occurred in winter. Similar two-to four-year and eleven-year oscillations were found for both the Atlantic and Pacific blocks by using wavelet analysis. The dominant mode for the Pacific blocks is decadal variation, while for the Atlantic blocks the predominant one is interannual variation with a period of about three years. The frequencies of the Pacific and Atlantic blocks varied almost in phase on interannual time scales except during the period of 1965-1977, and frequencies were out of phase on decadal time scale throughout the forty-two years.展开更多
This paper thoroughly studies the'. process of obtaining sulfur nanoparticles in aqueous medium from sodium polysulfide. Nanosize sulfur particles with orthorhombic structure were obtained at room temperature by mixi...This paper thoroughly studies the'. process of obtaining sulfur nanoparticles in aqueous medium from sodium polysulfide. Nanosize sulfur particles with orthorhombic structure were obtained at room temperature by mixing sodium polysulfide aqueous solution with various inorganic and organic acids. Sulfur nanoparticles were characterized by laser particle-size analyzer, X-ray diffraction, electron probe microscopy. Size of sulfur nanoparticles in aqueous dispersion is affected ;trongly by acid concentration, as well as nature of alcohols, used as wetting agents when measuring sulfur particles size iin aqueous medium. Availability of obtaining sulfur nanoparticles of 22-25 nm average si;,e in aqueous medium was revealed. High biological activity of sulfur nanoparticles and ethylalcohol composition on wheat grain couching was established.展开更多
It is noted that there has been little research to compare volume-based and number-based soil particle size distributions (PSDs). Our objectives were to characterize the scaling properties and the possible connectio...It is noted that there has been little research to compare volume-based and number-based soil particle size distributions (PSDs). Our objectives were to characterize the scaling properties and the possible connections between volume-based and number-based PSDs by applying single and joint multifractal analysis. Twelve soil samples were taken from selected sites in Northwest China and their PSDs were analyzed using laser diffractometry. The results indicated that the volume-based PSDs of all 12 samples and the number-based PSDs of 4 samples had multifractal scalings for moment order -6 〈 q 〈: 6. Some empirical relationships were identified between the extreme probability values, maximum probability (Pmax), minimum probability (Pmin), and Pmax/Pmin, and the multifractal indices, the difference and the ratio of generalized dimensions at q = 0 and 1 (Do - D1 and D1/Do), maximum and minimum singularity strength (αmax and OZmin) and their difference (αmax - αmin, spectrum width), and asymmetric index (RD). An increase in Pmax generally resulted in corresponding increases of Do - D1, αmax, αmax - αmin, and RD, which indicated that a large Pmax increased the multifractality of a distribution. Joint multifractal analysis showed that there was significant correlation between the scaling indices of volume-based and number-based PSDs. The multifractality indices indicated that for a given soil, the volume-based PSD was more homogeneous than the number-based PSD, and more likely to display monofractal rather than multifractal scaling.展开更多
Population genomic approaches are making rapid inroads in the study of non-model organisms, including marine taxa. To date, these marine studies have predominantly focused on rudimentary metrics describing the spatial...Population genomic approaches are making rapid inroads in the study of non-model organisms, including marine taxa. To date, these marine studies have predominantly focused on rudimentary metrics describing the spatial and environmental context of their study region (e.g., geographical distance, average sea surface temperature, average salinity). We contend that a more nuanced and considered approach to quantifying seascape dynamics and patterns can strengthen population genomic investigations and help identify spatial, temporal, and environmental factors associated with differing selective regimes or demographic histories. Nevertheless, approaches for quantifying marine landscapes are complicated. Characteristic features of the marine environment, including pelagic living in flowing water (experienced by most marine taxa at some point in their life cycle), require a well-designed spatial-temporal sampling strategy and analysis. Many genetic summary statistics used to describe populations may be inappropriate for marine species with large population sizes, large species ranges, stochastic recruitment, and asymmetrical gene flow. Finally, statistical approaches for testing associations between seascapes and population genomic patterns are still maturing with no single approach able to capture all relevant considerations. None of these issues are completely unique to marine systems and therefore similar issues and solutions will be shared for many organisms regardless of habitat. Here, we outline goals and spatial approaches for land- scape genomics with an emphasis on marine systems and review the growing empirical literature on seascape genomics. We review established tools and approaches and highlight promising new strategies to overcome select issues including a strategy to spatially optimize sampling. Despite the many challenges, we argue that marine systems may be especially well suited for identifying candidate genomic regions under environmentally mediated selection and that seascape genomic approaches are especially useful for identifying robust locus-by-environment associations.展开更多
Reflectance measurements of both the visible and infrared bands of passive remote sensing sensors are widely used to retrieve aerosol optical depth(AOD) information. This is performed commonly for data obtained over b...Reflectance measurements of both the visible and infrared bands of passive remote sensing sensors are widely used to retrieve aerosol optical depth(AOD) information. This is performed commonly for data obtained over both ocean and land, and these measurements allow for the off line development of a lookup table using radiative transfer models. Owing to molecular and aerosol effects, the reflected light received by the sensor is usually highly polarized. The linear polarization effect may be up to 100%, and the polarization factor of a sensor optical system will change the total intensity as well as the polarization status of the signal reaching the detector. The detector response will be different when the incident light polarization status changes, even if the total intensity remains constant. However, if the polarization calibration is neglected, it will cause obvious errors in the aerosol data retrieval. This is especially true for aerosol optical depth retrieval over an ocean. This measurement relies directly on the reflectance output of the sensor. Cases involving land surfaces are not discussed herein because the inhomogeneous properties conceal the error due to polarization. Taking the 550 and 860 nm bands as examples, the difference between the real top-of-atmosphere(TOA) reflectance and the reflectance reaching the detector is calculated using three different sensor polarization standards according to the Sea-viewing Wide Field-of-view Sensor(Sea Wi FS) and Moderate Resolution Imaging Spectroradiometer(MODIS) standards. The differences in AOD retrieval are also demonstrated using the lookup table developed previously from a vector radiative transfer code. The results reveal that under a normal situation in which the AOD is 0.15, the maximum AOD retrieval error could reach 0.04 in 550 nm but only 0.02 in 860 nm for the dust aerosol model. For the soot aerosol model, the maximum AOD retrieval error is 0.1 in 550 nm and 0.12 in 860 nm, indicating that the lack of polarization calibration will lead to large errors in aerosol retrieval over an ocean.展开更多
Catastrophe modeling for earthquakes is conventionally designed as a probabilistic model to estimate the losses based on risk and vulnerability of a portfolio of exposures for a foreseeable set of events. This approac...Catastrophe modeling for earthquakes is conventionally designed as a probabilistic model to estimate the losses based on risk and vulnerability of a portfolio of exposures for a foreseeable set of events. This approach lacks a physical science of building damage that is linked to ground-shaking characteristics. A proposed engineeringbased building damage estimation model based on established theories of seismic wave propagation and structural resonance is presented to address some of these shortcomings. A damage factor is introduced to provide an indication of the relative extent of damage to buildings.Analysis based on the proposed methodology is carried out using data derived from four case studies: the 2011 Tohoku earthquake; the 2007 Bengkulu earthquake; the 2011 Christchurch earthquake; and the 1999 Chi-Chi earthquake.Results show that the computed damage factors reasonably reflect the extent of actual damage to buildings that was observed in post-earthquake reconnaissance surveys. This indicates that the proposed damage simulation model has a promising future as a complementary assessment tool in building damage estimation in catastrophe modeling.展开更多
基金Supported by Key Program of National Natural Science Foundation in China (No. 91125010)Basic Sci-Tech Fund in Northwest Agriculture and Forestry University (No. QN2009087)China 111 Project (No.B12007)
基金The US National Science Foundation (No. CMMI-0408390,CMMI-0644552,BCS-0527508)the National Natural Science Foundation of China (No. 51010044,U1134206)+2 种基金the Fok YingTong Education Foundation (No. 114024)the Natural Science Foundation of Jiangsu Province (No. BK2009015)the Postdoctoral Science Foundation of Jiangsu Province (No. 0901005C)
文摘A min-max optimization method is proposed as a new approach to deal with the weight determination problem in the context of the analytic hierarchy process. The priority is obtained through minimizing the maximal absolute difference between the weight vector obtained from each column and the ideal weight vector. By transformation, the. constrained min- max optimization problem is converted to a linear programming problem, which can be solved using either the simplex method or the interior method. The Karush-Kuhn- Tucker condition is also analytically provided. These control thresholds provide a straightforward indication of inconsistency of the pairwise comparison matrix. Numerical computations for several case studies are conducted to compare the performance of the proposed method with three existing methods. This observation illustrates that the min-max method controls maximum deviation and gives more weight to non- dominate factors.
文摘The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.
基金supported by Defence Research and Development Organization (DRDO),Ministry of Defence, Government of India
文摘Ten quantitative morphological characters were studied in 56 Morus alba L. trees representing three natural populations from the trans-Himalayan Ladakh region. The altitude of collection sites ranged from 2815 to 3177 m above the sea level(asl). Coefficient of variation(CV) showed high phenotypic variation in M. alba. Linear regression analysis revealed that leaf and fruit size decreases with an increase in altitude. High CV was observed for leaf length, leaf width, petiole length, leaf area, internodal distance, number of nodes, bud length, fruit length, fruit width and fruit weight. Similarly, a high phenotypic plasticity index was observed for bud length, leaf length, leaf width, petiole length, leaf area, inter-nodal distance, number of nodes, fruit length, fruit width and fruit weight. For every 100 m increase in altitude, leaf length, leaf width and leaf area decreased by 1 cm, 0.8 cm and 16.6 cm2, respectively. Analysis of covariance showed a predominant altitudinal effect on the morphological characters in comparison to the population effect. A small change in the altitude caused significant change in the plant morphological characteristics. The present investigation represents to our knowledge the first study addressing phenotypic variation in mulberryalong an altitudinal gradient.
文摘Blocking is a large-scale, mid-latitude atmospheric anticyclone that splits the westerly into two jets and has a profound effect on local and regional climates. This study examined the seasonal, interannual, and decadal variability of the Atlantic and Pacific blocking anticyclones in the Northern Hemisphere based on the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis data between 1958 and 1999. The preferred blocking region during these forty-two years was located over the Atlantic. Most blocking anticyclones over the Atlantic occurred in spring, while most of those over the Pacific occurred in winter. Similar two-to four-year and eleven-year oscillations were found for both the Atlantic and Pacific blocks by using wavelet analysis. The dominant mode for the Pacific blocks is decadal variation, while for the Atlantic blocks the predominant one is interannual variation with a period of about three years. The frequencies of the Pacific and Atlantic blocks varied almost in phase on interannual time scales except during the period of 1965-1977, and frequencies were out of phase on decadal time scale throughout the forty-two years.
文摘This paper thoroughly studies the'. process of obtaining sulfur nanoparticles in aqueous medium from sodium polysulfide. Nanosize sulfur particles with orthorhombic structure were obtained at room temperature by mixing sodium polysulfide aqueous solution with various inorganic and organic acids. Sulfur nanoparticles were characterized by laser particle-size analyzer, X-ray diffraction, electron probe microscopy. Size of sulfur nanoparticles in aqueous dispersion is affected ;trongly by acid concentration, as well as nature of alcohols, used as wetting agents when measuring sulfur particles size iin aqueous medium. Availability of obtaining sulfur nanoparticles of 22-25 nm average si;,e in aqueous medium was revealed. High biological activity of sulfur nanoparticles and ethylalcohol composition on wheat grain couching was established.
基金Supported by the National Natural Science Foundation of China (No. 50709028)the Basic Foundation for Scientific Researchof Northwest Agriculture and Forestry Sci-Tech University,China (No. QN2009087)
文摘It is noted that there has been little research to compare volume-based and number-based soil particle size distributions (PSDs). Our objectives were to characterize the scaling properties and the possible connections between volume-based and number-based PSDs by applying single and joint multifractal analysis. Twelve soil samples were taken from selected sites in Northwest China and their PSDs were analyzed using laser diffractometry. The results indicated that the volume-based PSDs of all 12 samples and the number-based PSDs of 4 samples had multifractal scalings for moment order -6 〈 q 〈: 6. Some empirical relationships were identified between the extreme probability values, maximum probability (Pmax), minimum probability (Pmin), and Pmax/Pmin, and the multifractal indices, the difference and the ratio of generalized dimensions at q = 0 and 1 (Do - D1 and D1/Do), maximum and minimum singularity strength (αmax and OZmin) and their difference (αmax - αmin, spectrum width), and asymmetric index (RD). An increase in Pmax generally resulted in corresponding increases of Do - D1, αmax, αmax - αmin, and RD, which indicated that a large Pmax increased the multifractality of a distribution. Joint multifractal analysis showed that there was significant correlation between the scaling indices of volume-based and number-based PSDs. The multifractality indices indicated that for a given soil, the volume-based PSD was more homogeneous than the number-based PSD, and more likely to display monofractal rather than multifractal scaling.
文摘Population genomic approaches are making rapid inroads in the study of non-model organisms, including marine taxa. To date, these marine studies have predominantly focused on rudimentary metrics describing the spatial and environmental context of their study region (e.g., geographical distance, average sea surface temperature, average salinity). We contend that a more nuanced and considered approach to quantifying seascape dynamics and patterns can strengthen population genomic investigations and help identify spatial, temporal, and environmental factors associated with differing selective regimes or demographic histories. Nevertheless, approaches for quantifying marine landscapes are complicated. Characteristic features of the marine environment, including pelagic living in flowing water (experienced by most marine taxa at some point in their life cycle), require a well-designed spatial-temporal sampling strategy and analysis. Many genetic summary statistics used to describe populations may be inappropriate for marine species with large population sizes, large species ranges, stochastic recruitment, and asymmetrical gene flow. Finally, statistical approaches for testing associations between seascapes and population genomic patterns are still maturing with no single approach able to capture all relevant considerations. None of these issues are completely unique to marine systems and therefore similar issues and solutions will be shared for many organisms regardless of habitat. Here, we outline goals and spatial approaches for land- scape genomics with an emphasis on marine systems and review the growing empirical literature on seascape genomics. We review established tools and approaches and highlight promising new strategies to overcome select issues including a strategy to spatially optimize sampling. Despite the many challenges, we argue that marine systems may be especially well suited for identifying candidate genomic regions under environmentally mediated selection and that seascape genomic approaches are especially useful for identifying robust locus-by-environment associations.
基金supported by the Risk Reduction Programs of the Ministry of Civil Affairs of the People’s Republic of China(Grant No.TC088641)
文摘Reflectance measurements of both the visible and infrared bands of passive remote sensing sensors are widely used to retrieve aerosol optical depth(AOD) information. This is performed commonly for data obtained over both ocean and land, and these measurements allow for the off line development of a lookup table using radiative transfer models. Owing to molecular and aerosol effects, the reflected light received by the sensor is usually highly polarized. The linear polarization effect may be up to 100%, and the polarization factor of a sensor optical system will change the total intensity as well as the polarization status of the signal reaching the detector. The detector response will be different when the incident light polarization status changes, even if the total intensity remains constant. However, if the polarization calibration is neglected, it will cause obvious errors in the aerosol data retrieval. This is especially true for aerosol optical depth retrieval over an ocean. This measurement relies directly on the reflectance output of the sensor. Cases involving land surfaces are not discussed herein because the inhomogeneous properties conceal the error due to polarization. Taking the 550 and 860 nm bands as examples, the difference between the real top-of-atmosphere(TOA) reflectance and the reflectance reaching the detector is calculated using three different sensor polarization standards according to the Sea-viewing Wide Field-of-view Sensor(Sea Wi FS) and Moderate Resolution Imaging Spectroradiometer(MODIS) standards. The differences in AOD retrieval are also demonstrated using the lookup table developed previously from a vector radiative transfer code. The results reveal that under a normal situation in which the AOD is 0.15, the maximum AOD retrieval error could reach 0.04 in 550 nm but only 0.02 in 860 nm for the dust aerosol model. For the soot aerosol model, the maximum AOD retrieval error is 0.1 in 550 nm and 0.12 in 860 nm, indicating that the lack of polarization calibration will lead to large errors in aerosol retrieval over an ocean.
文摘Catastrophe modeling for earthquakes is conventionally designed as a probabilistic model to estimate the losses based on risk and vulnerability of a portfolio of exposures for a foreseeable set of events. This approach lacks a physical science of building damage that is linked to ground-shaking characteristics. A proposed engineeringbased building damage estimation model based on established theories of seismic wave propagation and structural resonance is presented to address some of these shortcomings. A damage factor is introduced to provide an indication of the relative extent of damage to buildings.Analysis based on the proposed methodology is carried out using data derived from four case studies: the 2011 Tohoku earthquake; the 2007 Bengkulu earthquake; the 2011 Christchurch earthquake; and the 1999 Chi-Chi earthquake.Results show that the computed damage factors reasonably reflect the extent of actual damage to buildings that was observed in post-earthquake reconnaissance surveys. This indicates that the proposed damage simulation model has a promising future as a complementary assessment tool in building damage estimation in catastrophe modeling.