Population genomic approaches are making rapid inroads in the study of non-model organisms, including marine taxa. To date, these marine studies have predominantly focused on rudimentary metrics describing the spatial...Population genomic approaches are making rapid inroads in the study of non-model organisms, including marine taxa. To date, these marine studies have predominantly focused on rudimentary metrics describing the spatial and environmental context of their study region (e.g., geographical distance, average sea surface temperature, average salinity). We contend that a more nuanced and considered approach to quantifying seascape dynamics and patterns can strengthen population genomic investigations and help identify spatial, temporal, and environmental factors associated with differing selective regimes or demographic histories. Nevertheless, approaches for quantifying marine landscapes are complicated. Characteristic features of the marine environment, including pelagic living in flowing water (experienced by most marine taxa at some point in their life cycle), require a well-designed spatial-temporal sampling strategy and analysis. Many genetic summary statistics used to describe populations may be inappropriate for marine species with large population sizes, large species ranges, stochastic recruitment, and asymmetrical gene flow. Finally, statistical approaches for testing associations between seascapes and population genomic patterns are still maturing with no single approach able to capture all relevant considerations. None of these issues are completely unique to marine systems and therefore similar issues and solutions will be shared for many organisms regardless of habitat. Here, we outline goals and spatial approaches for land- scape genomics with an emphasis on marine systems and review the growing empirical literature on seascape genomics. We review established tools and approaches and highlight promising new strategies to overcome select issues including a strategy to spatially optimize sampling. Despite the many challenges, we argue that marine systems may be especially well suited for identifying candidate genomic regions under environmentally mediated selection and that seascape genomic approaches are especially useful for identifying robust locus-by-environment associations.展开更多
Although the effects of the coalescent process on sequence divergence and genealogies are well understood, the vir- tual majority of studies that use molecular sequences to estimate times of divergence among species h...Although the effects of the coalescent process on sequence divergence and genealogies are well understood, the vir- tual majority of studies that use molecular sequences to estimate times of divergence among species have failed to account for the coalescent process. Here we study the impact of ancestral population size and incomplete lineage sorting on Bayesian estimates of species divergence times under the molecular clock when the inference model ignores the coalescent process. Using a combination of mathematical analysis, computer simulations and analysis of real data, we find that the errors on estimates of times and the molecular rate can be substantial when ancestral populations are large and when there is substantial incomplete lineage sorting. For example, in a simple three-species case, we find that if the most precise fossil calibration is placed on the root of the phylogeny, the age of the internal node is overestimated, while if the most precise calibration is placed on the internal node, then the age of the root is underestimated. In both cases, the molecular rate is overestimated. Using simulations on a phylogeny of nine species, we show that substantial errors in time and rate estimates can be obtained even when dating ancient divergence events. We analyse the hominoid phylogeny and show that estimates of the neutral mutation rate obtained while ignoring the coalescent are too high. Using a coalescent-based technique to obtain geological times of divergence, we obtain estimates of the mutation rate that are within experimental estimates and we also obtain substantially older divergence times within the phylogeny [Current Zoology 61 (5): 874-885, 2015].展开更多
We consider the small value probability of supercritical continuous state branching processes with immigration. From Pinsky (1972) it is known that under regularity condition on the branching mechanism and immigrati...We consider the small value probability of supercritical continuous state branching processes with immigration. From Pinsky (1972) it is known that under regularity condition on the branching mechanism and immigration mechanism, the normalized population size converges to a non-degenerate finite and positive limit PV as t tends to infinity. We provide sharp estimate on asymptotic behavior of P(W≤ε〈) as ε→ 0+ by studying the Laplace transform of W. Without immigration, we also give a simpler proof for the small value probability in the non-subordinator case via the prolific backbone decomposition.展开更多
文摘Population genomic approaches are making rapid inroads in the study of non-model organisms, including marine taxa. To date, these marine studies have predominantly focused on rudimentary metrics describing the spatial and environmental context of their study region (e.g., geographical distance, average sea surface temperature, average salinity). We contend that a more nuanced and considered approach to quantifying seascape dynamics and patterns can strengthen population genomic investigations and help identify spatial, temporal, and environmental factors associated with differing selective regimes or demographic histories. Nevertheless, approaches for quantifying marine landscapes are complicated. Characteristic features of the marine environment, including pelagic living in flowing water (experienced by most marine taxa at some point in their life cycle), require a well-designed spatial-temporal sampling strategy and analysis. Many genetic summary statistics used to describe populations may be inappropriate for marine species with large population sizes, large species ranges, stochastic recruitment, and asymmetrical gene flow. Finally, statistical approaches for testing associations between seascapes and population genomic patterns are still maturing with no single approach able to capture all relevant considerations. None of these issues are completely unique to marine systems and therefore similar issues and solutions will be shared for many organisms regardless of habitat. Here, we outline goals and spatial approaches for land- scape genomics with an emphasis on marine systems and review the growing empirical literature on seascape genomics. We review established tools and approaches and highlight promising new strategies to overcome select issues including a strategy to spatially optimize sampling. Despite the many challenges, we argue that marine systems may be especially well suited for identifying candidate genomic regions under environmentally mediated selection and that seascape genomic approaches are especially useful for identifying robust locus-by-environment associations.
文摘Although the effects of the coalescent process on sequence divergence and genealogies are well understood, the vir- tual majority of studies that use molecular sequences to estimate times of divergence among species have failed to account for the coalescent process. Here we study the impact of ancestral population size and incomplete lineage sorting on Bayesian estimates of species divergence times under the molecular clock when the inference model ignores the coalescent process. Using a combination of mathematical analysis, computer simulations and analysis of real data, we find that the errors on estimates of times and the molecular rate can be substantial when ancestral populations are large and when there is substantial incomplete lineage sorting. For example, in a simple three-species case, we find that if the most precise fossil calibration is placed on the root of the phylogeny, the age of the internal node is overestimated, while if the most precise calibration is placed on the internal node, then the age of the root is underestimated. In both cases, the molecular rate is overestimated. Using simulations on a phylogeny of nine species, we show that substantial errors in time and rate estimates can be obtained even when dating ancient divergence events. We analyse the hominoid phylogeny and show that estimates of the neutral mutation rate obtained while ignoring the coalescent are too high. Using a coalescent-based technique to obtain geological times of divergence, we obtain estimates of the mutation rate that are within experimental estimates and we also obtain substantially older divergence times within the phylogeny [Current Zoology 61 (5): 874-885, 2015].
基金supported by National Science Foundation of US (Grant Nos. DMS-0805929 and DMS-1106938)National Natural Science Foundation of China (Grant Nos. 10928103,10971003 and 11128101)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education of Chinathe Fundamental Research Funds for the Central Universities
文摘We consider the small value probability of supercritical continuous state branching processes with immigration. From Pinsky (1972) it is known that under regularity condition on the branching mechanism and immigration mechanism, the normalized population size converges to a non-degenerate finite and positive limit PV as t tends to infinity. We provide sharp estimate on asymptotic behavior of P(W≤ε〈) as ε→ 0+ by studying the Laplace transform of W. Without immigration, we also give a simpler proof for the small value probability in the non-subordinator case via the prolific backbone decomposition.