期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
应用多尺度融合策略和改进YOLOV5的道路病害无人机检测
1
作者
程传祥
金飞
+4 位作者
林雨准
王淑香
左溪冰
李军杰
苏凯阳
《地球信息科学学报》
EI
CSCD
北大核心
2024年第8期1991-2007,共17页
结合无人机和深度学习目标检测算法自动检测道路病害具有范围广、成本效益高等优势。然而,道路病害的形状和大小变化剧烈,很难完整检测它们。此外,受限于计算资源,通用的目标检测算法只适用于小尺寸影像(512像素×512像素或640像素&...
结合无人机和深度学习目标检测算法自动检测道路病害具有范围广、成本效益高等优势。然而,道路病害的形状和大小变化剧烈,很难完整检测它们。此外,受限于计算资源,通用的目标检测算法只适用于小尺寸影像(512像素×512像素或640像素×640像素),很难直接应用于大尺寸的无人机影像(5 472像素×3 648像素或7 952像素×5 304像素)。使用传统方法检测大尺寸影像中的多尺度目标会出现大尺寸目标切分、小尺寸目标漏检等问题。针对上述问题,本文提出了一种结合全局-局部多尺度融合策略和YOLOv5-RDD的创新解决方案。(1)构建了YOLOv5-RDD模型,在现有YOLOv5模型的基础上,设计多尺度C3(MSC3)模块和上下文特征金字塔网络(CFPN),增强了对多尺度目标的检测能力。(2)提出了一种全局-局部多尺度融合策略,利用下采样和切分手段获取大尺寸无人机影像的全局和局部信息,然后叠加全局和局部多尺度信息以获取整个大尺寸影像的多尺度信息,并采用中心非极大值抑制算法优化检测结果。(3)为验证所提方法的有效性,创建了一个专门用于无人机道路病害检测的UAV-RDD数据集。实验结果显示,与原始的YOLOv5模型相比,新模型YOLOv5-RDD在mAP上提升了5.8%,而全局-局部多尺度融合策略相比传统方法在mAP上提升了9.73%,充分证明了本文方法的有效性和优越性。
展开更多
关键词
道路病害检测
YOLOv5
无人机
影像
目标检测
大尺寸影像
多尺度特征融合
非极大值抑制
原文传递
题名
应用多尺度融合策略和改进YOLOV5的道路病害无人机检测
1
作者
程传祥
金飞
林雨准
王淑香
左溪冰
李军杰
苏凯阳
机构
信息工程大学
河南城建学院
平顶山学院
出处
《地球信息科学学报》
EI
CSCD
北大核心
2024年第8期1991-2007,共17页
文摘
结合无人机和深度学习目标检测算法自动检测道路病害具有范围广、成本效益高等优势。然而,道路病害的形状和大小变化剧烈,很难完整检测它们。此外,受限于计算资源,通用的目标检测算法只适用于小尺寸影像(512像素×512像素或640像素×640像素),很难直接应用于大尺寸的无人机影像(5 472像素×3 648像素或7 952像素×5 304像素)。使用传统方法检测大尺寸影像中的多尺度目标会出现大尺寸目标切分、小尺寸目标漏检等问题。针对上述问题,本文提出了一种结合全局-局部多尺度融合策略和YOLOv5-RDD的创新解决方案。(1)构建了YOLOv5-RDD模型,在现有YOLOv5模型的基础上,设计多尺度C3(MSC3)模块和上下文特征金字塔网络(CFPN),增强了对多尺度目标的检测能力。(2)提出了一种全局-局部多尺度融合策略,利用下采样和切分手段获取大尺寸无人机影像的全局和局部信息,然后叠加全局和局部多尺度信息以获取整个大尺寸影像的多尺度信息,并采用中心非极大值抑制算法优化检测结果。(3)为验证所提方法的有效性,创建了一个专门用于无人机道路病害检测的UAV-RDD数据集。实验结果显示,与原始的YOLOv5模型相比,新模型YOLOv5-RDD在mAP上提升了5.8%,而全局-局部多尺度融合策略相比传统方法在mAP上提升了9.73%,充分证明了本文方法的有效性和优越性。
关键词
道路病害检测
YOLOv5
无人机
影像
目标检测
大尺寸影像
多尺度特征融合
非极大值抑制
Keywords
road damage detection
YOLOv5
Unmanned Aerial Vehicle(UAV)
object detection
large-size image
multi-scale feature fusion
non-maximum suppression
分类号
U418.6 [交通运输工程—道路与铁道工程]
TP183 [自动化与计算机技术—控制理论与控制工程]
TP391.41 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
应用多尺度融合策略和改进YOLOV5的道路病害无人机检测
程传祥
金飞
林雨准
王淑香
左溪冰
李军杰
苏凯阳
《地球信息科学学报》
EI
CSCD
北大核心
2024
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部