Based on hourly precipitation from national surface stations,persistent heavy rainfall events(PHREs)over the Sichuan Basin(SCB)are explored during the warm season(May to September)from 2000 to 2015 to compare synoptic...Based on hourly precipitation from national surface stations,persistent heavy rainfall events(PHREs)over the Sichuan Basin(SCB)are explored during the warm season(May to September)from 2000 to 2015 to compare synoptic circulations and maintenance mechanisms between different PHRE types.There are two main types of PHREs:one is characterized by a rain belt west of 106°E over the SCB(WSB-PHREs),and the other features a rain belt east of 106°E over the SCB(ESB-PHREs).In total,there are 18 ESB-PHREs and 10 WSB-PHREs during the study period.Overall,the rain belts of WSB-PHREs are along the terrain distribution east of the Tibetan Plateau,while the precipitation intensity of ESB-PHREs is stronger.For the two types of PHREs,the shortwave trough over the SCB and the western Pacific subtropical high act as their favorable background environments,particularly for ESB-PHREs.The water vapor of WSB-PHREs is mainly transported from the South China Sea,whereas for ESB-PHREs the South China Sea and Bay of Bengal are their main moisture sources.The composite vorticity budgets of southwest vortices during their mature stage indicate that the convergence effect is a dominant factor for maintaining the two types of PHREs,and the strong vertical vorticity advection is also favorable,but the relative contribution of vertical advection is larger for WSB-PHREs.展开更多
The experimental investigation of supersonic flow over a hemisphere was conducted using Nanoparticle-based Planar Laser Scattering(NPLS) technique in a supersonic quiet wind tunnel at Ma=2.68.Ahead of the hemisphere,b...The experimental investigation of supersonic flow over a hemisphere was conducted using Nanoparticle-based Planar Laser Scattering(NPLS) technique in a supersonic quiet wind tunnel at Ma=2.68.Ahead of the hemisphere,boundary layer separation with the formation of a three-dimensional separated flow was observed,which was resulted from the interaction between the three-dimensional bow shock wave and the boundary layer.The complex flow structures of supersonic flow over the hemisphere were visualized.Based on the time correlation of NPLS images,time-space evolutionary characteristics of supersonic flow over the hemisphere were studied,and the evolutionary characteristics of the spanwise and streamwise large scale vortex structures were obtained,which have the features of periodicity and similar geometry.展开更多
A round jet into a counterflow under different jet-to-current velocity ratios was investigated using large eddy simulation.The results agree well with experimental measurements from laser-Doppler anemometry and laser-...A round jet into a counterflow under different jet-to-current velocity ratios was investigated using large eddy simulation.The results agree well with experimental measurements from laser-Doppler anemometry and laser-induced fluorescence that include velocity and mean concentrations along the centerline and radial direction.Vortex rings appear in the region near the jet exit and large-scale vortex structures still occur near the stagnation point.The flow becomes more chaotic and three-dimensional with the presence of these structures.In particular,their presence near the stagnation point results in large velocity fluctuations that enhance the mixing process and dilution.These fluctuations are described by probability density functions that deviate from Gaussian distribution.The three-dimensional streamlines indicate that the jet not only oscillates in three directions but also rotates about the jet axis and around the vortex.The second and third moments of the velocity or scalar fluctuations identify that the mixing processes are greater in the region before the stagnation point.展开更多
基金supported by the National Key R&D Program of China[grant number 2018YFC0809400]the National Natural Science Foundation of China[grant number 41975057].
文摘Based on hourly precipitation from national surface stations,persistent heavy rainfall events(PHREs)over the Sichuan Basin(SCB)are explored during the warm season(May to September)from 2000 to 2015 to compare synoptic circulations and maintenance mechanisms between different PHRE types.There are two main types of PHREs:one is characterized by a rain belt west of 106°E over the SCB(WSB-PHREs),and the other features a rain belt east of 106°E over the SCB(ESB-PHREs).In total,there are 18 ESB-PHREs and 10 WSB-PHREs during the study period.Overall,the rain belts of WSB-PHREs are along the terrain distribution east of the Tibetan Plateau,while the precipitation intensity of ESB-PHREs is stronger.For the two types of PHREs,the shortwave trough over the SCB and the western Pacific subtropical high act as their favorable background environments,particularly for ESB-PHREs.The water vapor of WSB-PHREs is mainly transported from the South China Sea,whereas for ESB-PHREs the South China Sea and Bay of Bengal are their main moisture sources.The composite vorticity budgets of southwest vortices during their mature stage indicate that the convergence effect is a dominant factor for maintaining the two types of PHREs,and the strong vertical vorticity advection is also favorable,but the relative contribution of vertical advection is larger for WSB-PHREs.
基金supported by the National Natural Science Foundation of China (11072264)
文摘The experimental investigation of supersonic flow over a hemisphere was conducted using Nanoparticle-based Planar Laser Scattering(NPLS) technique in a supersonic quiet wind tunnel at Ma=2.68.Ahead of the hemisphere,boundary layer separation with the formation of a three-dimensional separated flow was observed,which was resulted from the interaction between the three-dimensional bow shock wave and the boundary layer.The complex flow structures of supersonic flow over the hemisphere were visualized.Based on the time correlation of NPLS images,time-space evolutionary characteristics of supersonic flow over the hemisphere were studied,and the evolutionary characteristics of the spanwise and streamwise large scale vortex structures were obtained,which have the features of periodicity and similar geometry.
基金supported by the National Natural Science Foundation of China (Grant No. 11172218)academic award for excellent Ph.D.Candidates funded by the Ministry of Education of China
文摘A round jet into a counterflow under different jet-to-current velocity ratios was investigated using large eddy simulation.The results agree well with experimental measurements from laser-Doppler anemometry and laser-induced fluorescence that include velocity and mean concentrations along the centerline and radial direction.Vortex rings appear in the region near the jet exit and large-scale vortex structures still occur near the stagnation point.The flow becomes more chaotic and three-dimensional with the presence of these structures.In particular,their presence near the stagnation point results in large velocity fluctuations that enhance the mixing process and dilution.These fluctuations are described by probability density functions that deviate from Gaussian distribution.The three-dimensional streamlines indicate that the jet not only oscillates in three directions but also rotates about the jet axis and around the vortex.The second and third moments of the velocity or scalar fluctuations identify that the mixing processes are greater in the region before the stagnation point.