The relationship between ENSO and Indian Ocean Dipole was discussed by using the data set of sea temperature from Scripps Institute of Oceanography, the air temperature at 1000hPa from the NCEP reanalysis data and the...The relationship between ENSO and Indian Ocean Dipole was discussed by using the data set of sea temperature from Scripps Institute of Oceanography, the air temperature at 1000hPa from the NCEP reanalysis data and the Nino3 index from the Climate Prediction Center (CPC) of U.S.A. during the period from 1955 to 2001. The results show that there exists a Dipole on the maximum temperature anomalous level (MTAL) in the Indian Ocean, which close relates to ENSO in the Pacific Ocean. During El Nino periods there are good relationships between ENSO and Indian Ocean Dipole which maximum correlation occurring when ENSO leads by one month, but in La Nina periods the relationship is not so good. The distribution of Dipole in Indian Ocean is from northeast to southwest, which one (west) pole in 65°E - 75°E, 6°S - 10°S and the other in 85°E - 95°E, 2°N - 6°N, which is different from that defined by Saij. The correlation coefficients of Nino3 index with temperature anomalies in the west/east poles on the MTAL are over 0.4 - 0.15, respectively. It is a main sea temperature system in the tropical Indian Ocean. However, in the surface layer from sea surface to the depth of 20 m - 30 m there is no such a dipole with opposite sea temperature anomalies in the NE and SW of tropical Indian Ocean. The SSTA in the NE might be influenced by the sensible exchange process because the evolution of sea and 1 000 hPa air temperature anomaly time series of the NE of tropical Indian Ocean is quite similar except those during 1962 - 1963 and 1986. The periods of Indian Ocean Dipole are shorter than that of ENSO, and about 1 to 6-year.展开更多
An ocean reanalysis system for the joining area of Asia and Indian-Pacific Ocean (AIPO) has been developed and is currently delivering reanalysis data sets for study on the air-sea interaction over AIPO and its climat...An ocean reanalysis system for the joining area of Asia and Indian-Pacific Ocean (AIPO) has been developed and is currently delivering reanalysis data sets for study on the air-sea interaction over AIPO and its climate variation over China in the inter-annual time scale.This system consists of a nested ocean model forced by atmospheric reanalysis,an ensemble-based multivariate ocean data assimilation system and various ocean observations.The following report describes the main components of the data assimilation system in detail.The system adopts an ensemble optimal interpolation scheme that uses a seasonal update from a free running model to estimate the background error covariance matrix.In view of the systematic biases in some observation systems,some treatments were performed on the observations before the assimilation.A coarse resolution reanalysis dataset from the system is preliminarily evaluated to demonstrate the performance of the system for the period 1992 to 2006 by comparing this dataset with other observations or reanalysis data.展开更多
The protease inhibitor was purified from five different fish eggs. The molecular weights of Pacific herring, chum salmon, pond smelt, glassfish, and Alaska pollock egg protease inhibitors were 120, 89, 84.5, 17, and 1...The protease inhibitor was purified from five different fish eggs. The molecular weights of Pacific herring, chum salmon, pond smelt, glassfish, and Alaska pollock egg protease inhibitors were 120, 89, 84.5, 17, and 16.8kDa, respectively. The specific inhibitory activity of glassfish egg protease inhibitor was the highest followed by those of Pacific herring and Alaska pollock in order. The specific inhibitory activity and purity of glassfish egg protease inhibitor were 19.70 U mg^- 1 protein and 164.70 folds of purification, respectively. Glassfish egg protease inhibitor was reasonably stable at 50 - 65℃ and pH 8, which was more stable at high temperature and pH than protease inhibitors from the other fish species. Glassfish egg protease inhibitor was noncompetitive with inhibitor constant (Ki) of 4.44 nmol L^-1展开更多
During the 134 (1996 1997) and the 19th (2002-2003) Chinese National Antarctica Research Expeditions, we collected 60 discrete surface seawater samples along the cruise from the Chanjiang River (Yangtze) estuary...During the 134 (1996 1997) and the 19th (2002-2003) Chinese National Antarctica Research Expeditions, we collected 60 discrete surface seawater samples along the cruise from the Chanjiang River (Yangtze) estuary (30^.59%, 122^.26'E) through Taiwan Strait, the South China Sea, and the Eastern Indian Ocean to Prydz Bay, Antarctica (69^.10'S, 74^.30'E), and analyzed them for the 226Ra specific activity. The 226Ra specific activity of the Chanjiang River estuary surface water (3.15 Bq/m3) was found to be the highest among all the surface samples because of the desorption of 226Ra from riverine particles. Between Chanjiang River estuary and 40^.S, 226Ra specific activity was found to be relatively uniform with a mean value of 1.07 Bq/m3 (n= 19, SD=0.14), similar to that of the open ocean. From 40^.S to 65^.S, 226Ra specific activity increased intensively, then decreased moderately further southwards. Near the Antarctic shore, it increased again, to 2.31 Bq/m3. This distribution was controlled by a combination of deep water upwelling, Southern Ocean fronts, water mixing and the continental 226Ra import. In Prydz Bay and the adjacent sea area, the mean 226Ra activity value was 2.26 Bq/m3 (n=31, SD=0.28), with a relatively higher value outside of the bay and low 226Ra activity value in the center of the bay. This was consistent with the topography and hydrological setting of the bay. In addition, we extended the study area northward to the Arctic, by combining the published Z26Ra dataset for surface water from the Bering Sea to the Japan Sea. We also discuss the 226Ra distribution of high latitude oceanic surface water and its mechanisms.展开更多
基金supported by the National Natural Science Foundation of China, (No. 40976015)National Basic Research Program of China under Grant No. (2010CB950302)
文摘The relationship between ENSO and Indian Ocean Dipole was discussed by using the data set of sea temperature from Scripps Institute of Oceanography, the air temperature at 1000hPa from the NCEP reanalysis data and the Nino3 index from the Climate Prediction Center (CPC) of U.S.A. during the period from 1955 to 2001. The results show that there exists a Dipole on the maximum temperature anomalous level (MTAL) in the Indian Ocean, which close relates to ENSO in the Pacific Ocean. During El Nino periods there are good relationships between ENSO and Indian Ocean Dipole which maximum correlation occurring when ENSO leads by one month, but in La Nina periods the relationship is not so good. The distribution of Dipole in Indian Ocean is from northeast to southwest, which one (west) pole in 65°E - 75°E, 6°S - 10°S and the other in 85°E - 95°E, 2°N - 6°N, which is different from that defined by Saij. The correlation coefficients of Nino3 index with temperature anomalies in the west/east poles on the MTAL are over 0.4 - 0.15, respectively. It is a main sea temperature system in the tropical Indian Ocean. However, in the surface layer from sea surface to the depth of 20 m - 30 m there is no such a dipole with opposite sea temperature anomalies in the NE and SW of tropical Indian Ocean. The SSTA in the NE might be influenced by the sensible exchange process because the evolution of sea and 1 000 hPa air temperature anomaly time series of the NE of tropical Indian Ocean is quite similar except those during 1962 - 1963 and 1986. The periods of Indian Ocean Dipole are shorter than that of ENSO, and about 1 to 6-year.
基金supported by the Chinese Academy of Sciences (Grant No. KZCX2-YW-202)the 973 Pro-gram (Grant No. 2006CB403606),the 863 Program (Grant No.2009AA12Z138)the National Natural Science Foundation of China (Grant Nos. 40606008,40437017,and 40221503)
文摘An ocean reanalysis system for the joining area of Asia and Indian-Pacific Ocean (AIPO) has been developed and is currently delivering reanalysis data sets for study on the air-sea interaction over AIPO and its climate variation over China in the inter-annual time scale.This system consists of a nested ocean model forced by atmospheric reanalysis,an ensemble-based multivariate ocean data assimilation system and various ocean observations.The following report describes the main components of the data assimilation system in detail.The system adopts an ensemble optimal interpolation scheme that uses a seasonal update from a free running model to estimate the background error covariance matrix.In view of the systematic biases in some observation systems,some treatments were performed on the observations before the assimilation.A coarse resolution reanalysis dataset from the system is preliminarily evaluated to demonstrate the performance of the system for the period 1992 to 2006 by comparing this dataset with other observations or reanalysis data.
基金supported by a research fund of the Fisheries Research and Development Projects 20020129 from the Korean Ministry of Marine Affairs and Fisheries.
文摘The protease inhibitor was purified from five different fish eggs. The molecular weights of Pacific herring, chum salmon, pond smelt, glassfish, and Alaska pollock egg protease inhibitors were 120, 89, 84.5, 17, and 16.8kDa, respectively. The specific inhibitory activity of glassfish egg protease inhibitor was the highest followed by those of Pacific herring and Alaska pollock in order. The specific inhibitory activity and purity of glassfish egg protease inhibitor were 19.70 U mg^- 1 protein and 164.70 folds of purification, respectively. Glassfish egg protease inhibitor was reasonably stable at 50 - 65℃ and pH 8, which was more stable at high temperature and pH than protease inhibitors from the other fish species. Glassfish egg protease inhibitor was noncompetitive with inhibitor constant (Ki) of 4.44 nmol L^-1
基金Supported by the National Natural Science Foundation of China(Nos.40706033 and 40806031)COMRA Program(Nos.DYXM-115-02-1-12 and DY115-01-2-5)
文摘During the 134 (1996 1997) and the 19th (2002-2003) Chinese National Antarctica Research Expeditions, we collected 60 discrete surface seawater samples along the cruise from the Chanjiang River (Yangtze) estuary (30^.59%, 122^.26'E) through Taiwan Strait, the South China Sea, and the Eastern Indian Ocean to Prydz Bay, Antarctica (69^.10'S, 74^.30'E), and analyzed them for the 226Ra specific activity. The 226Ra specific activity of the Chanjiang River estuary surface water (3.15 Bq/m3) was found to be the highest among all the surface samples because of the desorption of 226Ra from riverine particles. Between Chanjiang River estuary and 40^.S, 226Ra specific activity was found to be relatively uniform with a mean value of 1.07 Bq/m3 (n= 19, SD=0.14), similar to that of the open ocean. From 40^.S to 65^.S, 226Ra specific activity increased intensively, then decreased moderately further southwards. Near the Antarctic shore, it increased again, to 2.31 Bq/m3. This distribution was controlled by a combination of deep water upwelling, Southern Ocean fronts, water mixing and the continental 226Ra import. In Prydz Bay and the adjacent sea area, the mean 226Ra activity value was 2.26 Bq/m3 (n=31, SD=0.28), with a relatively higher value outside of the bay and low 226Ra activity value in the center of the bay. This was consistent with the topography and hydrological setting of the bay. In addition, we extended the study area northward to the Arctic, by combining the published Z26Ra dataset for surface water from the Bering Sea to the Japan Sea. We also discuss the 226Ra distribution of high latitude oceanic surface water and its mechanisms.