针对目前智能手机难以拍摄大建筑物全貌以及基于移动视觉检索的户外定位系统匹配大建筑物失准的问题,提出一种面向大建筑物的移动视觉定位算法。基于尺度不变特征变换理论,该算法通过提取建筑物不同角度的特征建立一种建筑物多视角特征...针对目前智能手机难以拍摄大建筑物全貌以及基于移动视觉检索的户外定位系统匹配大建筑物失准的问题,提出一种面向大建筑物的移动视觉定位算法。基于尺度不变特征变换理论,该算法通过提取建筑物不同角度的特征建立一种建筑物多视角特征模型,并基于该模型建立建筑物特征库,同时通过在特征库中匹配用户提交的不同角度建筑物照片的特征点实现定位。实验结果表明,与基于GPS定位的算法相比,该算法能够通过建筑物图像匹配精确的进行定位,解决了GPS在高楼林立的市区定位不准的问题;并且该算法通过保留建筑物特征的空间位置信息,能较好地过滤错误匹配,与基于BOF(bag of feature)算法的移动视觉定位算法相比,提高了匹配精确度,具有较强的实用价值。展开更多
文摘针对目前智能手机难以拍摄大建筑物全貌以及基于移动视觉检索的户外定位系统匹配大建筑物失准的问题,提出一种面向大建筑物的移动视觉定位算法。基于尺度不变特征变换理论,该算法通过提取建筑物不同角度的特征建立一种建筑物多视角特征模型,并基于该模型建立建筑物特征库,同时通过在特征库中匹配用户提交的不同角度建筑物照片的特征点实现定位。实验结果表明,与基于GPS定位的算法相比,该算法能够通过建筑物图像匹配精确的进行定位,解决了GPS在高楼林立的市区定位不准的问题;并且该算法通过保留建筑物特征的空间位置信息,能较好地过滤错误匹配,与基于BOF(bag of feature)算法的移动视觉定位算法相比,提高了匹配精确度,具有较强的实用价值。