The car sequencing problem(CSP)concerns a production sequence of different types of cars in the mixed-model assembly line.A hybrid algorithm is proposed to find an assembly sequence of CSP with minimum violations.Firs...The car sequencing problem(CSP)concerns a production sequence of different types of cars in the mixed-model assembly line.A hybrid algorithm is proposed to find an assembly sequence of CSP with minimum violations.Firstly,the hybrid algorithm is based on the tabu search and large neighborhood search(TLNS),servicing as the framework.Moreover,two components are incorporated into the hybrid algorithm.One is the parallel constructive heuristic(PCH)that is used to construct a set of initial solutions and find some high quality solutions,and the other is the small neighborhood search(SNS)which is designed to improve the new constructed solutions.The computational results show that the proposed hybrid algorithm(PCH+TLNS+SNS)obtains100best known values out of109public instances,among these89instances get their best known values with100%success rate.By comparing with the well-known related algorithms,computational results demonstrate the effectiveness,efficiency and robustness of the proposed algorithm.展开更多
This paper presents a new method based on an immune-tabu hybrid algorithm to solve the thermal unit commitment (TUC) problem in power plant optimization. The mathematical model of the TUC problem is established by a...This paper presents a new method based on an immune-tabu hybrid algorithm to solve the thermal unit commitment (TUC) problem in power plant optimization. The mathematical model of the TUC problem is established by analyzing the generating units in modem power plants. A novel immune-tabu hybrid algorithm is proposed to solve this complex problem. In the algorithm, the objective function of the TUC problem is considered as an antigen and the solutions are considered as antibodies, which are determined by the affinity computation. The code length of an antibody is shortened by encoding the continuous operating time, and the optimum searching speed is improved. Each feasible individual in the immune algorithm (IA) is used as the initial solution of the tabu search (TS) algorithm after certain generations of IA iteration. As examples, the proposed method has been applied to several thermal unit systems for a period of 24 h. The computation results demonstrate the good global optimum searching performance of the proposed immune-tabu hybrid algorithm. The presented algorithm can also be used to solve other optimization problems in fields such as the chemical industry and the power industry.展开更多
基金Project(51435009) supported by the National Natural Science Foundation of ChinaProject(LQ14E080002) supported by the Zhejiang Provincial Natural Science Foundation of ChinaProject supported by the K.C.Wong Magna Fund in Ningbo University,China
文摘The car sequencing problem(CSP)concerns a production sequence of different types of cars in the mixed-model assembly line.A hybrid algorithm is proposed to find an assembly sequence of CSP with minimum violations.Firstly,the hybrid algorithm is based on the tabu search and large neighborhood search(TLNS),servicing as the framework.Moreover,two components are incorporated into the hybrid algorithm.One is the parallel constructive heuristic(PCH)that is used to construct a set of initial solutions and find some high quality solutions,and the other is the small neighborhood search(SNS)which is designed to improve the new constructed solutions.The computational results show that the proposed hybrid algorithm(PCH+TLNS+SNS)obtains100best known values out of109public instances,among these89instances get their best known values with100%success rate.By comparing with the well-known related algorithms,computational results demonstrate the effectiveness,efficiency and robustness of the proposed algorithm.
基金Project partially supported by the Lamar Research Enhancement Grant and the National Science Foundation Grant (No. DUE-0737173) to Dr. W. Zhu at Lamar University
文摘This paper presents a new method based on an immune-tabu hybrid algorithm to solve the thermal unit commitment (TUC) problem in power plant optimization. The mathematical model of the TUC problem is established by analyzing the generating units in modem power plants. A novel immune-tabu hybrid algorithm is proposed to solve this complex problem. In the algorithm, the objective function of the TUC problem is considered as an antigen and the solutions are considered as antibodies, which are determined by the affinity computation. The code length of an antibody is shortened by encoding the continuous operating time, and the optimum searching speed is improved. Each feasible individual in the immune algorithm (IA) is used as the initial solution of the tabu search (TS) algorithm after certain generations of IA iteration. As examples, the proposed method has been applied to several thermal unit systems for a period of 24 h. The computation results demonstrate the good global optimum searching performance of the proposed immune-tabu hybrid algorithm. The presented algorithm can also be used to solve other optimization problems in fields such as the chemical industry and the power industry.