An acoustic pressure amplifier (APA) is capable of improving the match between a thermoacoustic engine and a load by elevating pressure ratio and acoustic power output. A standing-wave thermoacoustic engine driving a ...An acoustic pressure amplifier (APA) is capable of improving the match between a thermoacoustic engine and a load by elevating pressure ratio and acoustic power output. A standing-wave thermoacoustic engine driving a resistance- and-compliance (RC) load through an APA was simulated with linear thermoacoustics to study the impact of load impedance on the performance of the thermoacoustic system. Based on the simulation results, analysis focuses on the distribution of pressure amplitude and velocity amplitude in APA with an RC load of diverse acoustic resistances and compliance impedances. Variation of operating parameters, including pressure ratio, acoustic power, hot end temperature of stack, etc., versus impedance of the RC load is presented and analyzed according to the abovementioned distribution. A verifying experiment has been performed, which indicates that the simulation can roughly predict the system operation in the fundamental-frequency mode.展开更多
Large space truss structure is widely used in spacecrafts.The vibration of this kind of structure will cause some serious problems.For instance,it will disturb the work of the payloads which are supported on the truss...Large space truss structure is widely used in spacecrafts.The vibration of this kind of structure will cause some serious problems.For instance,it will disturb the work of the payloads which are supported on the truss,even worse,it will deactivate the spacecrafts.Therefore,it is highly in need of executing vibration control for large space truss structure.Large space intelligent truss system(LSITS) is not a normal truss structure but a complex truss system consisting of common rods and active rods,and there are at least one actuator and one sensor in each active rod.One of the key points in the vibration control for LSITS is the location assignment of actuators and sensors.The positions of actuators and sensors will directly determine the properties of the control system,such as stability,controllability,observability,etc.In this paper,placement optimization of actuators and sensors(POAS) and decentralized adaptive fuzzy control methods are presented to solve the vibration control problem.The electro-mechanical coupled equations of the active rod are established,and the optimization criterion which does not depend upon control methods is proposed.The optimal positions of actuators and sensors in LSITS are obtained by using genetic algorithm(GA).Furthermore,the decentralized adaptive fuzzy vibration controller is designed to control LSITS.The LSITS dynamic equations with considering those remaining modes are derived.The adaptive fuzzy control scheme is improved via sliding control method.One T-typed truss structure is taken as an example and a demonstration experiment is carried out.The experimental results show that the GA is reliable and valid for placement optimization of actuators and sensors,and the adaptive fuzzy controller can effectively suppress the vibration of LSITS without control spillovers and observation spillovers.展开更多
A cybernetics model of manufacturing execution system(MES CM) was proposed and studied from the viewpoint of cybernetics.Combining with the features of manufacturing system, the MES CM was modeled by"generalized ...A cybernetics model of manufacturing execution system(MES CM) was proposed and studied from the viewpoint of cybernetics.Combining with the features of manufacturing system, the MES CM was modeled by"generalized modeling"method that is discussed in large-scale system theory.The mathematical model of MES CM was constructed by the generalized operator model, and the main characteristics of MES CM were analyzed.展开更多
In aerodynamics, the laminar or turbulent regime of a boundary layer has a strong influence on friction or heat transfer. In practical applications, it is sometimes necessary to trip the transition to turbulent, and a...In aerodynamics, the laminar or turbulent regime of a boundary layer has a strong influence on friction or heat transfer. In practical applications, it is sometimes necessary to trip the transition to turbulent, and a common way is by use of a roughness element (e.g. a step) on the wall. The present paper is concerned with the numerical im- plementation of such a trip in large-eddy simulations. The study is carried out on a flat-plate boundary layer con- figuration, with Reynolds number Rex=l.3x 106. First, this work brings the opportunity to introduce a practical methodology to assess convergence in large-eddy simulations. Second, concerning the trip implementation, a volume source term is proposed and is shown to yield a smoother and faster transition than a grid step. Moreover, it is easier to implement and more adaptable. Finally, two subgrid-scale models are tested: the WALE model of Nic0ud and Ducros (Flow Turbul. Combust., vol. 62, 1999) and the shear-improved Smagorinsky model of Ldv^que et al. (J. Fluid Mech., vol. 570, 2007). Both models allow transition, but the former appears to yield a faster transition and a better prediction of friction in the turbulent regime.展开更多
基金Project supported by the National Natural Sciences Foundation of China (No. 50536040)the University Doctoral Subject Special Foundation of China (No. 20050335047)+1 种基金the Postdoctoral Science Foundation of Zhejiang Province (No. 2006-bsh-21)the Natural Science Foundation of Zhejiang Province (No. Y107229), China
文摘An acoustic pressure amplifier (APA) is capable of improving the match between a thermoacoustic engine and a load by elevating pressure ratio and acoustic power output. A standing-wave thermoacoustic engine driving a resistance- and-compliance (RC) load through an APA was simulated with linear thermoacoustics to study the impact of load impedance on the performance of the thermoacoustic system. Based on the simulation results, analysis focuses on the distribution of pressure amplitude and velocity amplitude in APA with an RC load of diverse acoustic resistances and compliance impedances. Variation of operating parameters, including pressure ratio, acoustic power, hot end temperature of stack, etc., versus impedance of the RC load is presented and analyzed according to the abovementioned distribution. A verifying experiment has been performed, which indicates that the simulation can roughly predict the system operation in the fundamental-frequency mode.
基金supported by the National Natural Science Foundation of China (Grant No. 10472006)
文摘Large space truss structure is widely used in spacecrafts.The vibration of this kind of structure will cause some serious problems.For instance,it will disturb the work of the payloads which are supported on the truss,even worse,it will deactivate the spacecrafts.Therefore,it is highly in need of executing vibration control for large space truss structure.Large space intelligent truss system(LSITS) is not a normal truss structure but a complex truss system consisting of common rods and active rods,and there are at least one actuator and one sensor in each active rod.One of the key points in the vibration control for LSITS is the location assignment of actuators and sensors.The positions of actuators and sensors will directly determine the properties of the control system,such as stability,controllability,observability,etc.In this paper,placement optimization of actuators and sensors(POAS) and decentralized adaptive fuzzy control methods are presented to solve the vibration control problem.The electro-mechanical coupled equations of the active rod are established,and the optimization criterion which does not depend upon control methods is proposed.The optimal positions of actuators and sensors in LSITS are obtained by using genetic algorithm(GA).Furthermore,the decentralized adaptive fuzzy vibration controller is designed to control LSITS.The LSITS dynamic equations with considering those remaining modes are derived.The adaptive fuzzy control scheme is improved via sliding control method.One T-typed truss structure is taken as an example and a demonstration experiment is carried out.The experimental results show that the GA is reliable and valid for placement optimization of actuators and sensors,and the adaptive fuzzy controller can effectively suppress the vibration of LSITS without control spillovers and observation spillovers.
文摘A cybernetics model of manufacturing execution system(MES CM) was proposed and studied from the viewpoint of cybernetics.Combining with the features of manufacturing system, the MES CM was modeled by"generalized modeling"method that is discussed in large-scale system theory.The mathematical model of MES CM was constructed by the generalized operator model, and the main characteristics of MES CM were analyzed.
文摘In aerodynamics, the laminar or turbulent regime of a boundary layer has a strong influence on friction or heat transfer. In practical applications, it is sometimes necessary to trip the transition to turbulent, and a common way is by use of a roughness element (e.g. a step) on the wall. The present paper is concerned with the numerical im- plementation of such a trip in large-eddy simulations. The study is carried out on a flat-plate boundary layer con- figuration, with Reynolds number Rex=l.3x 106. First, this work brings the opportunity to introduce a practical methodology to assess convergence in large-eddy simulations. Second, concerning the trip implementation, a volume source term is proposed and is shown to yield a smoother and faster transition than a grid step. Moreover, it is easier to implement and more adaptable. Finally, two subgrid-scale models are tested: the WALE model of Nic0ud and Ducros (Flow Turbul. Combust., vol. 62, 1999) and the shear-improved Smagorinsky model of Ldv^que et al. (J. Fluid Mech., vol. 570, 2007). Both models allow transition, but the former appears to yield a faster transition and a better prediction of friction in the turbulent regime.