Heteracalixaromatics are an emerging generation of macrocyclic host molecules in supramolecular chemistry. As a typical example of heteracalixaromatics, oxacalix[2]arene[2]triazine adopts a shape-persistent 1,3-altern...Heteracalixaromatics are an emerging generation of macrocyclic host molecules in supramolecular chemistry. As a typical example of heteracalixaromatics, oxacalix[2]arene[2]triazine adopts a shape-persistent 1,3-alternate conformation and can be easily functionalized. Taking it as a platform, a series of oxacalix[2]arene[2]triazine-based amphiphiles bearing long alkyl chains were synthesized through post-macrocyclization functionalization or 3+1 fragment coupling protocols. The self-assembly behavior of these arnphiphiles in a mixture of tetrahydrofuran (THF) and water was investigated. Dynamic light scattering (DLS) measurements revealed that the size of the self-assembled aggregates is dependent on the structure of the amphiphiles. The long alkyl chain substituents and/or interrnolecular hydrogen bonds were found to promote the self-assembly.展开更多
An overview of recent researches of surface plasmon resonance (SPR) sensing technology in Laboratory of Science and Technology of Micro-Nano Optics (LMNO), University of Science and Technology of China, is present...An overview of recent researches of surface plasmon resonance (SPR) sensing technology in Laboratory of Science and Technology of Micro-Nano Optics (LMNO), University of Science and Technology of China, is presented. Some novel SPR sensors, such as sensors based on metallic grating, metal-insulator-metal (MIM) nanoring and optical fiber, are designed or fabricated and tested. The sensor based on localized surface plasmon resonance (LSPR) of metallic nanoparticles is also be summarized. Because of the coupling of propagating surface plasmons and localized surface plasmons, the localized electromagnetic field is extremely enhanced, which is applied to surface-enhanced Raman scattering (SERS) and fluorenscence enhancement. Future prospects of SPR and/or LSPR sensing developments and applications are atso discussed.展开更多
基金supported by the National Natural Science Foundation of China(21272239,91427301,21521002)Ministry of Science and Technology(2013CB834504)
文摘Heteracalixaromatics are an emerging generation of macrocyclic host molecules in supramolecular chemistry. As a typical example of heteracalixaromatics, oxacalix[2]arene[2]triazine adopts a shape-persistent 1,3-alternate conformation and can be easily functionalized. Taking it as a platform, a series of oxacalix[2]arene[2]triazine-based amphiphiles bearing long alkyl chains were synthesized through post-macrocyclization functionalization or 3+1 fragment coupling protocols. The self-assembly behavior of these arnphiphiles in a mixture of tetrahydrofuran (THF) and water was investigated. Dynamic light scattering (DLS) measurements revealed that the size of the self-assembled aggregates is dependent on the structure of the amphiphiles. The long alkyl chain substituents and/or interrnolecular hydrogen bonds were found to promote the self-assembly.
基金This work is supported by the National Key Basic Research Program of China (No. 2011cb301802), and Key Program of National Natural Science Foundation of China (No. 60736037). The authors gratefully acknowledge Prof. Y. H. Lu, D. G. Zhang, and P. Wang for many helpful discussions.
文摘An overview of recent researches of surface plasmon resonance (SPR) sensing technology in Laboratory of Science and Technology of Micro-Nano Optics (LMNO), University of Science and Technology of China, is presented. Some novel SPR sensors, such as sensors based on metallic grating, metal-insulator-metal (MIM) nanoring and optical fiber, are designed or fabricated and tested. The sensor based on localized surface plasmon resonance (LSPR) of metallic nanoparticles is also be summarized. Because of the coupling of propagating surface plasmons and localized surface plasmons, the localized electromagnetic field is extremely enhanced, which is applied to surface-enhanced Raman scattering (SERS) and fluorenscence enhancement. Future prospects of SPR and/or LSPR sensing developments and applications are atso discussed.