In this paper, we present Real-Time Flow Filter (RTFF) -a system that adopts a middle ground between coarse-grained volume anomaly detection and deep packet inspection. RTFF was designed with the goal of scaling to hi...In this paper, we present Real-Time Flow Filter (RTFF) -a system that adopts a middle ground between coarse-grained volume anomaly detection and deep packet inspection. RTFF was designed with the goal of scaling to high volume data feeds that are common in large Tier-1 ISP networks and providing rich, timely information on observed attacks. It is a software solution that is designed to run on off-the-shelf hardware platforms and incorporates a scalable data processing architecture along with lightweight analysis algorithms that make it suitable for deployment in large networks. RTFF also makes use of state of the art machine learning algorithms to construct attack models that can be used to detect as well as predict attacks.展开更多
Materials informatics has emerged as a promisingly new paradigm for accelerating materials discovery and design.It exploits the intelligent power of machine learning methods in massive materials data from experiments ...Materials informatics has emerged as a promisingly new paradigm for accelerating materials discovery and design.It exploits the intelligent power of machine learning methods in massive materials data from experiments or simulations to seek new materials,functionality,and principles,etc.Developing specialized facilities to generate,collect,manage,learn,and mine large-scale materials data is crucial to materials informatics.We herein developed an artificial-intelligence-aided data-driven infrastructure named Jilin Artificial-intelligence aided Materials-design Integrated Package(JAMIP),which is an open-source Python framework to meet the research requirements of computational materials informatics.It is integrated by materials production factory,high-throughput first-principles calculations engine,automatic tasks submission and monitoring progress,data extraction,management and storage system,and artificial intelligence machine learning based data mining functions.We have integrated specific features such as an inorganic crystal structure prototype database to facilitate high-throughput calculations and essential modules associated with machine learning studies of functional materials.We demonstrated how our developed code is useful in exploring materials informatics of optoelectronic semiconductors by taking halide perovskites as typical case.By obeying the principles of automation,extensibility,reliability,and intelligence,the JAMIP code is a promisingly powerful tool contributing to the fast-growing field of computational materials informatics.展开更多
文摘In this paper, we present Real-Time Flow Filter (RTFF) -a system that adopts a middle ground between coarse-grained volume anomaly detection and deep packet inspection. RTFF was designed with the goal of scaling to high volume data feeds that are common in large Tier-1 ISP networks and providing rich, timely information on observed attacks. It is a software solution that is designed to run on off-the-shelf hardware platforms and incorporates a scalable data processing architecture along with lightweight analysis algorithms that make it suitable for deployment in large networks. RTFF also makes use of state of the art machine learning algorithms to construct attack models that can be used to detect as well as predict attacks.
基金supported by the National Natural Science Foundation of China(61722403,92061113,and 12004131)the Interdisciplinary Research Grant for Ph Ds of Jilin University(101832020DJX043)。
文摘Materials informatics has emerged as a promisingly new paradigm for accelerating materials discovery and design.It exploits the intelligent power of machine learning methods in massive materials data from experiments or simulations to seek new materials,functionality,and principles,etc.Developing specialized facilities to generate,collect,manage,learn,and mine large-scale materials data is crucial to materials informatics.We herein developed an artificial-intelligence-aided data-driven infrastructure named Jilin Artificial-intelligence aided Materials-design Integrated Package(JAMIP),which is an open-source Python framework to meet the research requirements of computational materials informatics.It is integrated by materials production factory,high-throughput first-principles calculations engine,automatic tasks submission and monitoring progress,data extraction,management and storage system,and artificial intelligence machine learning based data mining functions.We have integrated specific features such as an inorganic crystal structure prototype database to facilitate high-throughput calculations and essential modules associated with machine learning studies of functional materials.We demonstrated how our developed code is useful in exploring materials informatics of optoelectronic semiconductors by taking halide perovskites as typical case.By obeying the principles of automation,extensibility,reliability,and intelligence,the JAMIP code is a promisingly powerful tool contributing to the fast-growing field of computational materials informatics.