Horizontal winds in the mesosphere (80-100 km) were measured by meteor radar in Wuhan, China (30° N, 114° E) over a 45-month interval in 2002-2005 and the data examined to investigate the monthly mean be...Horizontal winds in the mesosphere (80-100 km) were measured by meteor radar in Wuhan, China (30° N, 114° E) over a 45-month interval in 2002-2005 and the data examined to investigate the monthly mean behavior of the Ol tide. A clear seasonal variation in amplitude of the O1 tide ranging from -0.3 m/s to 2.6 m/s was observed. In most months, the northward and eastward components differed by about 7 lunar hours with the eastward component leading. Comparison of the amplitudes of the M2 and O1 tides suggests the O1 tide is quite stronger over Wuhan, China. The amplitude ratio of the O1 tide to the M2 tide is quite stronger than that the gravitational potential being 0.41. The vertical wavelength of the O1 tide differs on a monthly basis. Height profiles of the O1 tide showed obvious height variation. The O1 tide is stronger in January and July. In different month, the vertical wavelength for the O1 tide changes considerably at the same height. The year's variation trend of the northward and eastward components is very similar in both phase and amplitude.展开更多
Global land cover data products are key sources of information in understanding the complex interactions between human activities and global change. They play a critical role in improving performances of ecosystem, hy...Global land cover data products are key sources of information in understanding the complex interactions between human activities and global change. They play a critical role in improving performances of ecosystem, hydrological and atmospheric models. Three freely available global land cover products developed in the United States are popularly used by the scientific community. These include two global maps developed separately by the United States Geological Survey (USGS) and the University of Maryland (UMD) with NOAA Advanced Very High Resolution Radiometer ( AVHRR ) data, and one developed by Boston University with the EOS Moderate Resolution Imaging Spectroradiometer ( MODIS) data. They are compared with known land cover types at 250 available Fluxnet sites around the world. The overall accuracies are 37%, 36% and 42%, respectively for the USGS, UMD and Boston global land cover maps, Some future global land cover mapping strategies are suggested.展开更多
基金Acknowledgements This research was supported by National Natural Science Foundation of China (41104095)
文摘Horizontal winds in the mesosphere (80-100 km) were measured by meteor radar in Wuhan, China (30° N, 114° E) over a 45-month interval in 2002-2005 and the data examined to investigate the monthly mean behavior of the Ol tide. A clear seasonal variation in amplitude of the O1 tide ranging from -0.3 m/s to 2.6 m/s was observed. In most months, the northward and eastward components differed by about 7 lunar hours with the eastward component leading. Comparison of the amplitudes of the M2 and O1 tides suggests the O1 tide is quite stronger over Wuhan, China. The amplitude ratio of the O1 tide to the M2 tide is quite stronger than that the gravitational potential being 0.41. The vertical wavelength of the O1 tide differs on a monthly basis. Height profiles of the O1 tide showed obvious height variation. The O1 tide is stronger in January and July. In different month, the vertical wavelength for the O1 tide changes considerably at the same height. The year's variation trend of the northward and eastward components is very similar in both phase and amplitude.
基金support from the US National Science Foundation grant(NSF DEB 04-21530)the National Natural Science Foundation of China(30590370).
文摘Global land cover data products are key sources of information in understanding the complex interactions between human activities and global change. They play a critical role in improving performances of ecosystem, hydrological and atmospheric models. Three freely available global land cover products developed in the United States are popularly used by the scientific community. These include two global maps developed separately by the United States Geological Survey (USGS) and the University of Maryland (UMD) with NOAA Advanced Very High Resolution Radiometer ( AVHRR ) data, and one developed by Boston University with the EOS Moderate Resolution Imaging Spectroradiometer ( MODIS) data. They are compared with known land cover types at 250 available Fluxnet sites around the world. The overall accuracies are 37%, 36% and 42%, respectively for the USGS, UMD and Boston global land cover maps, Some future global land cover mapping strategies are suggested.