期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于大数据模式识别机器学习算法的热力站动态能耗指标预测模型
被引量:
6
1
作者
王炎
张海增
+2 位作者
胡新华
赵隽
李添
《电力大数据》
2020年第4期47-53,共7页
为了实现对供热系统热力站的热负荷预测,将天气、用户室内温度和时间迟滞性等因素作为负荷预测的数据依据。本文利用统计学原理和大数据架构,通过大量数据样本的学习和修正,为解决热力行业热力控制理论缺失问题提供了一条崭新的方法。...
为了实现对供热系统热力站的热负荷预测,将天气、用户室内温度和时间迟滞性等因素作为负荷预测的数据依据。本文利用统计学原理和大数据架构,通过大量数据样本的学习和修正,为解决热力行业热力控制理论缺失问题提供了一条崭新的方法。将模式识别算法和时间序列相关性分析作为算法的核心,为解决天气和时间迟滞性对用户供热的影响提供了可能。本文以我公司n个典型热力站和其所带热用户为实验对象,以所在地区天气预报和天气实时数据为依据,对供暖期间所采集的热力站供暖数据、天气预报数据、典型供暖用户室内温度,通过大数据模式识别机器学习算法对样本进行学习训练,形成一套完整热力站动态能耗指标预测模型。
展开更多
关键词
大数据模式识别
机器学习
指标
预测
欧式距离
复合相关系数
下载PDF
职称材料
题名
基于大数据模式识别机器学习算法的热力站动态能耗指标预测模型
被引量:
6
1
作者
王炎
张海增
胡新华
赵隽
李添
机构
北京华源热力管网有限公司
出处
《电力大数据》
2020年第4期47-53,共7页
文摘
为了实现对供热系统热力站的热负荷预测,将天气、用户室内温度和时间迟滞性等因素作为负荷预测的数据依据。本文利用统计学原理和大数据架构,通过大量数据样本的学习和修正,为解决热力行业热力控制理论缺失问题提供了一条崭新的方法。将模式识别算法和时间序列相关性分析作为算法的核心,为解决天气和时间迟滞性对用户供热的影响提供了可能。本文以我公司n个典型热力站和其所带热用户为实验对象,以所在地区天气预报和天气实时数据为依据,对供暖期间所采集的热力站供暖数据、天气预报数据、典型供暖用户室内温度,通过大数据模式识别机器学习算法对样本进行学习训练,形成一套完整热力站动态能耗指标预测模型。
关键词
大数据模式识别
机器学习
指标
预测
欧式距离
复合相关系数
Keywords
big data pattern recognition
machine learning
index
prediction
european distance
composite correlation coefficient
分类号
TP39 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于大数据模式识别机器学习算法的热力站动态能耗指标预测模型
王炎
张海增
胡新华
赵隽
李添
《电力大数据》
2020
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部