In this paper, we present Real-Time Flow Filter (RTFF) -a system that adopts a middle ground between coarse-grained volume anomaly detection and deep packet inspection. RTFF was designed with the goal of scaling to hi...In this paper, we present Real-Time Flow Filter (RTFF) -a system that adopts a middle ground between coarse-grained volume anomaly detection and deep packet inspection. RTFF was designed with the goal of scaling to high volume data feeds that are common in large Tier-1 ISP networks and providing rich, timely information on observed attacks. It is a software solution that is designed to run on off-the-shelf hardware platforms and incorporates a scalable data processing architecture along with lightweight analysis algorithms that make it suitable for deployment in large networks. RTFF also makes use of state of the art machine learning algorithms to construct attack models that can be used to detect as well as predict attacks.展开更多
A database of Antarctic 10 m firn temperature was constructed using available borehole temperature measurements with data quality control to extend knowledge of Antarctic climate. Slopes from a high-resolution digital...A database of Antarctic 10 m firn temperature was constructed using available borehole temperature measurements with data quality control to extend knowledge of Antarctic climate. Slopes from a high-resolution digital elevation model and the main ice divide were used to delineate main drainage sectors across Antarctica. In each drainage sector, a quantitative relationship between temperature and latitude, longitude and altitude was established using available tim temperature data. Quantitative relationships incorporating other factors affecting Antarctic air temperature such as atmospheric circulation and small-scale to- pography were used to derive a 10-km resolution grid map of surface temperature. The resulting temperature patterns presented a reasonable depiction of both large and small-scale variations in Antarctic 10 m firn temperature. This map is useful for many spatial variation studies, Antarctic ice sheet models, and comparison with satellite-derived temperature data and outputs of atmospheric general circulation models.展开更多
文摘In this paper, we present Real-Time Flow Filter (RTFF) -a system that adopts a middle ground between coarse-grained volume anomaly detection and deep packet inspection. RTFF was designed with the goal of scaling to high volume data feeds that are common in large Tier-1 ISP networks and providing rich, timely information on observed attacks. It is a software solution that is designed to run on off-the-shelf hardware platforms and incorporates a scalable data processing architecture along with lightweight analysis algorithms that make it suitable for deployment in large networks. RTFF also makes use of state of the art machine learning algorithms to construct attack models that can be used to detect as well as predict attacks.
基金supported by National Natural Science Foundation of China (Grant No. 40825017)Chinese Academy of Sciences (Grant No. SKLCSZZ-2008-06)National Key Technology R & D Program (Grant No. 2006BAB18B01)
文摘A database of Antarctic 10 m firn temperature was constructed using available borehole temperature measurements with data quality control to extend knowledge of Antarctic climate. Slopes from a high-resolution digital elevation model and the main ice divide were used to delineate main drainage sectors across Antarctica. In each drainage sector, a quantitative relationship between temperature and latitude, longitude and altitude was established using available tim temperature data. Quantitative relationships incorporating other factors affecting Antarctic air temperature such as atmospheric circulation and small-scale to- pography were used to derive a 10-km resolution grid map of surface temperature. The resulting temperature patterns presented a reasonable depiction of both large and small-scale variations in Antarctic 10 m firn temperature. This map is useful for many spatial variation studies, Antarctic ice sheet models, and comparison with satellite-derived temperature data and outputs of atmospheric general circulation models.