期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于自适应边界向量提取的多尺度v-支持向量机建模
被引量:
2
1
作者
苏成利
郑博元
李平
《控制与决策》
EI
CSCD
北大核心
2015年第4期721-726,共6页
针对v-支持向量机(v-SVM)用于大规模、多峰样本建模时易出现训练速度慢和回归精度低的问题,提出基于边界向量提取的多尺度v-SVM建模方法.该方法采用一种自适应边界向量提取算法,从训练样本中预提取出包含全部支持向量的边界向量集,以缩...
针对v-支持向量机(v-SVM)用于大规模、多峰样本建模时易出现训练速度慢和回归精度低的问题,提出基于边界向量提取的多尺度v-SVM建模方法.该方法采用一种自适应边界向量提取算法,从训练样本中预提取出包含全部支持向量的边界向量集,以缩减训练样本规模,并通过求解多尺度v-SVM二次规划问题获取全局最优回归模型,从多个尺度上对复杂分布样本进行逼近.仿真结果表明,基于边界向量提取的多尺度v-SVM比v-SVM具有更好的回归结果.
展开更多
关键词
大样本建模
边界向量提取
多尺度学习
V-支持向量机
原文传递
题名
基于自适应边界向量提取的多尺度v-支持向量机建模
被引量:
2
1
作者
苏成利
郑博元
李平
机构
辽宁石油化工大学信息与控制工程学院
出处
《控制与决策》
EI
CSCD
北大核心
2015年第4期721-726,共6页
基金
国家自然科学基金项目(61203021)
辽宁省科技攻关项目(2011216011)
文摘
针对v-支持向量机(v-SVM)用于大规模、多峰样本建模时易出现训练速度慢和回归精度低的问题,提出基于边界向量提取的多尺度v-SVM建模方法.该方法采用一种自适应边界向量提取算法,从训练样本中预提取出包含全部支持向量的边界向量集,以缩减训练样本规模,并通过求解多尺度v-SVM二次规划问题获取全局最优回归模型,从多个尺度上对复杂分布样本进行逼近.仿真结果表明,基于边界向量提取的多尺度v-SVM比v-SVM具有更好的回归结果.
关键词
大样本建模
边界向量提取
多尺度学习
V-支持向量机
Keywords
large sample modeling
boundary vector extraction multiscale study v-support vector machine
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于自适应边界向量提取的多尺度v-支持向量机建模
苏成利
郑博元
李平
《控制与决策》
EI
CSCD
北大核心
2015
2
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部