This paper aims to present a theoretical method to study the bearing performance of vertically loaded large-diameter pipe pile groups.The interactions between group piles result in different bearing performance of bot...This paper aims to present a theoretical method to study the bearing performance of vertically loaded large-diameter pipe pile groups.The interactions between group piles result in different bearing performance of both a single pile and pile groups.Considering the pile group effect and the skin friction from both outer and inner soils,an analytical solution is developed to calculate the settlement and axial force in large-diameter pipe pile groups.The analytical solution was verified by centrifuge and field testing results.An extensive parametric analysis was performed to study the bearing performance of the pipe pile groups.The results reveal that the axial forces in group piles are not the same.The larger the distance from central pile,the larger the axial force.The axial force in the central pile is the smallest,while that in corner piles is the largest.The axial force on the top of the corner piles decreases while that in the central pile increases with increasing of pile spacing and decreasing of pile length.The axial force in side piles varies little with the variations of pile spacing,pile length,and shear modulus of the soil and is approximately equal to the average load shared by one pile.For a pile group,the larger the pile length is,the larger the influence radius is.As a result,the pile group effect is more apparent for a larger pile length.The settlement of pile groups decreases with increasing of the pile number in the group and the shear modulus of the underlying soil.展开更多
Pile group foundation and caisson foundation are two common foundation schemes of long-span bridges, and the seismic performances of the two kinds of foundations are different. Taking Taizhou Bridge as an example, whi...Pile group foundation and caisson foundation are two common foundation schemes of long-span bridges, and the seismic performances of the two kinds of foundations are different. Taking Taizhou Bridge as an example, which is the first kilometer level three-pylon two-span suspension bridge in the world, two foundation schemes are designed for the middle pylon, and two whole bridge models with two different foundation schemes of the middle pylon are established respectively in this paper. The effects of foundation-soil interaction are simulated by equivalent linear soil springs whose stiffnesses are calculated according to m method. Seismic capacity/demand ratios of the two models are calculated. The following conclusions can be drawn: the weak positions of the two schemes are not the same; if caisson foundation is adopted for the middle pylon, the weak position is the bearing capacity of the middle pylon foundation, while if pile group foundation is adopted for the middle pylon, the weak position is the bearing capacity of the side pylon foundation.展开更多
Sutong Bridge,as a world-record cable-stayed bridge with its main span exceeding 1 000 m constructed in Yangtze River estuary region in China,is located at a site with complicated hydrologic conditions and poor geotec...Sutong Bridge,as a world-record cable-stayed bridge with its main span exceeding 1 000 m constructed in Yangtze River estuary region in China,is located at a site with complicated hydrologic conditions and poor geotechnical conditions and therefore,scour protection will be a decisive factor for ensuring smooth and successful construction of this bridge.This paper,starting from structural description of deep-water group pile foundation,analyzes impact to the bridge safety introduced by scour and its protection and further presents different solutions of scour protection for foundation structures of this bridge.展开更多
基金supported by the Joint High Speed Railway Key Program of National Natural Science Foundation of China (Grant No.U1134207)the National Natural Science Foundation of China (Grant No.51378177)+1 种基金the Program for Excellent University Talents in New Century (Grant No.NCET-12-0843)the Fundamental Research Fund for the Central Universities (Grant No.106112014CDJZR200007)
文摘This paper aims to present a theoretical method to study the bearing performance of vertically loaded large-diameter pipe pile groups.The interactions between group piles result in different bearing performance of both a single pile and pile groups.Considering the pile group effect and the skin friction from both outer and inner soils,an analytical solution is developed to calculate the settlement and axial force in large-diameter pipe pile groups.The analytical solution was verified by centrifuge and field testing results.An extensive parametric analysis was performed to study the bearing performance of the pipe pile groups.The results reveal that the axial forces in group piles are not the same.The larger the distance from central pile,the larger the axial force.The axial force in the central pile is the smallest,while that in corner piles is the largest.The axial force on the top of the corner piles decreases while that in the central pile increases with increasing of pile spacing and decreasing of pile length.The axial force in side piles varies little with the variations of pile spacing,pile length,and shear modulus of the soil and is approximately equal to the average load shared by one pile.For a pile group,the larger the pile length is,the larger the influence radius is.As a result,the pile group effect is more apparent for a larger pile length.The settlement of pile groups decreases with increasing of the pile number in the group and the shear modulus of the underlying soil.
基金National Science and Technology Support Program of China(No.2009BAG15B01)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-190)+1 种基金the Ministry of Science and Technology of China(No.SLDRCE 08-B-04)the Fundamental Research Funds for the Central Universities and Kwang-Hua Fund for College of Civil Engineering of Tongji University
文摘Pile group foundation and caisson foundation are two common foundation schemes of long-span bridges, and the seismic performances of the two kinds of foundations are different. Taking Taizhou Bridge as an example, which is the first kilometer level three-pylon two-span suspension bridge in the world, two foundation schemes are designed for the middle pylon, and two whole bridge models with two different foundation schemes of the middle pylon are established respectively in this paper. The effects of foundation-soil interaction are simulated by equivalent linear soil springs whose stiffnesses are calculated according to m method. Seismic capacity/demand ratios of the two models are calculated. The following conclusions can be drawn: the weak positions of the two schemes are not the same; if caisson foundation is adopted for the middle pylon, the weak position is the bearing capacity of the middle pylon foundation, while if pile group foundation is adopted for the middle pylon, the weak position is the bearing capacity of the side pylon foundation.
基金National Science and Technology Support Program(No.2006BAG04B05)
文摘Sutong Bridge,as a world-record cable-stayed bridge with its main span exceeding 1 000 m constructed in Yangtze River estuary region in China,is located at a site with complicated hydrologic conditions and poor geotechnical conditions and therefore,scour protection will be a decisive factor for ensuring smooth and successful construction of this bridge.This paper,starting from structural description of deep-water group pile foundation,analyzes impact to the bridge safety introduced by scour and its protection and further presents different solutions of scour protection for foundation structures of this bridge.