In the solar atmosphere, there exist two frequently-observed phenomena, Moreton waves and EIT(extreme-ultraviolet imaging telescope) waves, whose physical nature is still under debate. In this work, we perform a three...In the solar atmosphere, there exist two frequently-observed phenomena, Moreton waves and EIT(extreme-ultraviolet imaging telescope) waves, whose physical nature is still under debate. In this work, we perform a three-dimensional ray-tracing simulation for the propagation of fast magnetoacoustic waves. We build a stratified solar atmosphere model and take partial ionization into consideration to give an exact description of chromosphere and transition region. The calculated result is compared with a flare event observation in which both Moreton waves and EIT waves were present. In agreement with observations, the calculated wavefront show different kinematical characteristics in different propagation directions during different times.Moreton waves and EIT waves have higher propagation speeds near the active region where the magnetic field strength is strong. The result suggests that both Moreton waves and EIT waves of this event can be interpreted as the fast magnetoacoustic waves propagating at different heights in the solar atmosphere.展开更多
基金the National Natural Science Foundation of China(Grant Nos.41274174,41422405,41274169&41421063)the Fundamental Research Funds for the Central Universities(Grant No.WK2080000077)
文摘In the solar atmosphere, there exist two frequently-observed phenomena, Moreton waves and EIT(extreme-ultraviolet imaging telescope) waves, whose physical nature is still under debate. In this work, we perform a three-dimensional ray-tracing simulation for the propagation of fast magnetoacoustic waves. We build a stratified solar atmosphere model and take partial ionization into consideration to give an exact description of chromosphere and transition region. The calculated result is compared with a flare event observation in which both Moreton waves and EIT waves were present. In agreement with observations, the calculated wavefront show different kinematical characteristics in different propagation directions during different times.Moreton waves and EIT waves have higher propagation speeds near the active region where the magnetic field strength is strong. The result suggests that both Moreton waves and EIT waves of this event can be interpreted as the fast magnetoacoustic waves propagating at different heights in the solar atmosphere.