The global planetary boundary layer height(PBLH)estimated from 11 years(2007–17)of Integrated Global Radiosonde Archive(IGRA)data,Constellation Observing System for Meteorology,Ionosphere and Climate(COSMIC)soundings...The global planetary boundary layer height(PBLH)estimated from 11 years(2007–17)of Integrated Global Radiosonde Archive(IGRA)data,Constellation Observing System for Meteorology,Ionosphere and Climate(COSMIC)soundings,and European Center for Medium-Range Weather Forecasts(ECMWF)interim reanalysis(ERAInterim)data,are compared in this study.In general,the spatial distribution of global PBLH derived from ERAInterim is consistent with the one from IGRA,both at 1200 UTC and 0000 UTC.High PBLH occurs at noon local time,because of strong radiation energy and convective activity.There are larger differences between the results of COSMIC and the other two datasets.PBLHs derived from COSMIC are much higher than those from radiosonde and reanalysis data.However,PBLHs derived from the three datasets all exhibit higher values in the low latitudes and lower ones in the high latitudes.The latitudinal difference between IGRA and COSMIC ranges from−1700 m to−500 m,while it ranges from−500 m to 250 m for IGRA and ERA-Interim.It is found that the differences among the three datasets are larger in winter and smaller in summer for most studied latitudes.展开更多
基金supported by the Meteorological Research Open Foundation of Huaihe Basin grant number HRM201604。
文摘The global planetary boundary layer height(PBLH)estimated from 11 years(2007–17)of Integrated Global Radiosonde Archive(IGRA)data,Constellation Observing System for Meteorology,Ionosphere and Climate(COSMIC)soundings,and European Center for Medium-Range Weather Forecasts(ECMWF)interim reanalysis(ERAInterim)data,are compared in this study.In general,the spatial distribution of global PBLH derived from ERAInterim is consistent with the one from IGRA,both at 1200 UTC and 0000 UTC.High PBLH occurs at noon local time,because of strong radiation energy and convective activity.There are larger differences between the results of COSMIC and the other two datasets.PBLHs derived from COSMIC are much higher than those from radiosonde and reanalysis data.However,PBLHs derived from the three datasets all exhibit higher values in the low latitudes and lower ones in the high latitudes.The latitudinal difference between IGRA and COSMIC ranges from−1700 m to−500 m,while it ranges from−500 m to 250 m for IGRA and ERA-Interim.It is found that the differences among the three datasets are larger in winter and smaller in summer for most studied latitudes.