本文利用6S(Second Simulation of a Satellite Signal in the Solar Spectrum)、Acolite DSF(Dark spectrum fitting)、C2RCC(Case 2 Regional Coast Color)、SeaDas(SeaWiFS Data Analysis System)、Sen2Cor(Sentinel 2 Correction)、...本文利用6S(Second Simulation of a Satellite Signal in the Solar Spectrum)、Acolite DSF(Dark spectrum fitting)、C2RCC(Case 2 Regional Coast Color)、SeaDas(SeaWiFS Data Analysis System)、Sen2Cor(Sentinel 2 Correction)、Polymer(Polynomial based algorithm applied to MERIS)和iCOR(Image correction for atmospheric effects)7种大气校正算法,结合松花湖、月亮泡、小兴凯湖实测遥感反射率数据对“哨兵-2号”(Sentinel-2)数据进行大气校正研究,验证算法性能。整体校正结果显示,相较于实测遥感反射率,上述7种大气校正算法均在可见光波段(400~800 nm)呈现不同程度的低估。除C2RCC算法外,其余6种算法校正后的遥感反射率与实测光谱曲线变化趋势基本吻合,其中Sen2Cor算法与iCOR算法性能最佳,Polymer算法性能最差;在单波段校正精度对比中,Sen2Cor和iCOR算法几乎所有波段的均方根误差和平均绝对百分比误差都低于其余5种算法。Sen2Cor算法在560 nm、665 nm和705 nm处校正精度优于其余6种算法,iCOR算法在443 nm和740 nm处有良好的表现,在490 nm处6S算法校正精度最高,拥有最低的均方根误差(0.0059 sr^(−1))和平均绝对百分比误差(21.40%)。结果表明,这7种大气校正算法均可以在一定程度上去除大气影响,增加影像的可用性,Sen2Cor算法和iCOR算法更适用于本文所研究水体或相似水体。展开更多
高分一号(GF-1)卫星是中国高分系列卫星的首发星,自2013年4月成功发射以来,在中国农业遥感业务工作中得到了广泛应用,已成为中国大宗农作物种植面积遥感监测的主要数据源。该文基于6S(second simulation of a satellite signal in the s...高分一号(GF-1)卫星是中国高分系列卫星的首发星,自2013年4月成功发射以来,在中国农业遥感业务工作中得到了广泛应用,已成为中国大宗农作物种植面积遥感监测的主要数据源。该文基于6S(second simulation of a satellite signal in the solar spectrum)辐射传输模型原理,设计并实现了适合于GF-1卫星数据大气校正算法与程序。算法以GF-1卫星1级数据、元数据及传感器公开参数为输入数据,不需要其他外源辅助数据,经过辐射定标,计算各波段平均太阳辐射值、表观反射率,通过选择大气模式,驱动6S模型获取表观反射率转换为地表反射率的参数,逐像元计算影像地表反射率。在算法研制的基础上,应用Fortran和IDL语言编写了大气校正批处理程序,实现了大气校正过程的批处理。该文采用2014年4月3日、6月28日、11月2日,以及2015年1月19日4个时相北京地区GF1卫星WFV(wide field view)数据,分别代表春夏秋冬4个季节,通过与ENVI软件的FLAASH(fast line-of-sight atmospheric analysis of spectral hypercubes)大气校正结果对比进行评估。2种方法 4个时相各波段全年相对偏差为3.26%,蓝光波段偏差最大为11.21%,其次是红、近红和绿光波段,分别为1.19%、0.73%和0.24%。作物覆盖区平均相对误差为12.99%,冬季最高为17.40%,秋季和春季分别为15.02%和14.15%,夏季相对差异最小为8.31%。各波段地表反射率的整体校正情况并未有太大差异,但6S校正后各波段反射率普遍比FLAASH校正结果略微偏高。2种校正结果计算的NDVI也基本一致,相对偏差0.64%;除水体外,绝对值差值的平均值均在0.0548以内。从计算效率来分析,6S模块实现了商用软件FLAASH模块中未提供的批量计算,在相同硬件环境下计算效率提高了75.0%以上。研究结果表明了该文开发的大气校正程序能够稳定批量处理GF-1卫星数据,可以作为农业遥感监测业务流程的组成部分。展开更多
文摘本文利用6S(Second Simulation of a Satellite Signal in the Solar Spectrum)、Acolite DSF(Dark spectrum fitting)、C2RCC(Case 2 Regional Coast Color)、SeaDas(SeaWiFS Data Analysis System)、Sen2Cor(Sentinel 2 Correction)、Polymer(Polynomial based algorithm applied to MERIS)和iCOR(Image correction for atmospheric effects)7种大气校正算法,结合松花湖、月亮泡、小兴凯湖实测遥感反射率数据对“哨兵-2号”(Sentinel-2)数据进行大气校正研究,验证算法性能。整体校正结果显示,相较于实测遥感反射率,上述7种大气校正算法均在可见光波段(400~800 nm)呈现不同程度的低估。除C2RCC算法外,其余6种算法校正后的遥感反射率与实测光谱曲线变化趋势基本吻合,其中Sen2Cor算法与iCOR算法性能最佳,Polymer算法性能最差;在单波段校正精度对比中,Sen2Cor和iCOR算法几乎所有波段的均方根误差和平均绝对百分比误差都低于其余5种算法。Sen2Cor算法在560 nm、665 nm和705 nm处校正精度优于其余6种算法,iCOR算法在443 nm和740 nm处有良好的表现,在490 nm处6S算法校正精度最高,拥有最低的均方根误差(0.0059 sr^(−1))和平均绝对百分比误差(21.40%)。结果表明,这7种大气校正算法均可以在一定程度上去除大气影响,增加影像的可用性,Sen2Cor算法和iCOR算法更适用于本文所研究水体或相似水体。
文摘高分一号(GF-1)卫星是中国高分系列卫星的首发星,自2013年4月成功发射以来,在中国农业遥感业务工作中得到了广泛应用,已成为中国大宗农作物种植面积遥感监测的主要数据源。该文基于6S(second simulation of a satellite signal in the solar spectrum)辐射传输模型原理,设计并实现了适合于GF-1卫星数据大气校正算法与程序。算法以GF-1卫星1级数据、元数据及传感器公开参数为输入数据,不需要其他外源辅助数据,经过辐射定标,计算各波段平均太阳辐射值、表观反射率,通过选择大气模式,驱动6S模型获取表观反射率转换为地表反射率的参数,逐像元计算影像地表反射率。在算法研制的基础上,应用Fortran和IDL语言编写了大气校正批处理程序,实现了大气校正过程的批处理。该文采用2014年4月3日、6月28日、11月2日,以及2015年1月19日4个时相北京地区GF1卫星WFV(wide field view)数据,分别代表春夏秋冬4个季节,通过与ENVI软件的FLAASH(fast line-of-sight atmospheric analysis of spectral hypercubes)大气校正结果对比进行评估。2种方法 4个时相各波段全年相对偏差为3.26%,蓝光波段偏差最大为11.21%,其次是红、近红和绿光波段,分别为1.19%、0.73%和0.24%。作物覆盖区平均相对误差为12.99%,冬季最高为17.40%,秋季和春季分别为15.02%和14.15%,夏季相对差异最小为8.31%。各波段地表反射率的整体校正情况并未有太大差异,但6S校正后各波段反射率普遍比FLAASH校正结果略微偏高。2种校正结果计算的NDVI也基本一致,相对偏差0.64%;除水体外,绝对值差值的平均值均在0.0548以内。从计算效率来分析,6S模块实现了商用软件FLAASH模块中未提供的批量计算,在相同硬件环境下计算效率提高了75.0%以上。研究结果表明了该文开发的大气校正程序能够稳定批量处理GF-1卫星数据,可以作为农业遥感监测业务流程的组成部分。