基于湍流散射理论,运用边界层风廓线雷达(WPR)联合RASS(Radio Acoustic Sounding System),GPS/PWV(Global Position System/Precipitable Water Vapor)进行全遥感系统的大气比湿廓线反演试验,并对影响因子进行分析。利用2011年8—9月云...基于湍流散射理论,运用边界层风廓线雷达(WPR)联合RASS(Radio Acoustic Sounding System),GPS/PWV(Global Position System/Precipitable Water Vapor)进行全遥感系统的大气比湿廓线反演试验,并对影响因子进行分析。利用2011年8—9月云南大理综合探测试验数据的反演结果与探空数据进行比较分析,结果表明:WPR联合探空的温度廓线和起始边界比湿(q_0)反演大气比湿廓线,与探空大气比湿廓线相比具有相同的变化趋势,标准差为0.84 g·kg^(-1),误差随高度增加呈递增趋势;WPR联合RASS,GPS/PWV数据反演大气比湿廓线,与探空大气比湿廓线的标准差为0.85 g·kg^(-1)。参加反演的数据中,折射指数结构常数C_n^2与谱宽σ_(turb)~2对反演影响最大,反演算法中大气折射指数梯度M符号的判断对反演精度也有较大影响。展开更多
文摘基于湍流散射理论,运用边界层风廓线雷达(WPR)联合RASS(Radio Acoustic Sounding System),GPS/PWV(Global Position System/Precipitable Water Vapor)进行全遥感系统的大气比湿廓线反演试验,并对影响因子进行分析。利用2011年8—9月云南大理综合探测试验数据的反演结果与探空数据进行比较分析,结果表明:WPR联合探空的温度廓线和起始边界比湿(q_0)反演大气比湿廓线,与探空大气比湿廓线相比具有相同的变化趋势,标准差为0.84 g·kg^(-1),误差随高度增加呈递增趋势;WPR联合RASS,GPS/PWV数据反演大气比湿廓线,与探空大气比湿廓线的标准差为0.85 g·kg^(-1)。参加反演的数据中,折射指数结构常数C_n^2与谱宽σ_(turb)~2对反演影响最大,反演算法中大气折射指数梯度M符号的判断对反演精度也有较大影响。