Hydrogen and oxygen isotopes in precipitation have been widely used as effective traces to investigate hydrological processes such as evaporation and atmospheric moisture source. This study analyzed δD and δ^(18)O o...Hydrogen and oxygen isotopes in precipitation have been widely used as effective traces to investigate hydrological processes such as evaporation and atmospheric moisture source. This study analyzed δD and δ^(18)O of precipitation in continuous event-based samples at three stations of Pailugou Catchment from November 2012 to December 2013. The δ^(18)O and δD values ranged from-32.32‰ to +3.23‰ and from-254.46‰ to +12.11‰, respectively. Results show that the δ^(18)O displayed a distinct seasonal variation, with enriched values occurring in summer and relatively depleted values in winter, respectively. There was a statistically significant positive correlation between the δ^(18)O and δD values and local surface air temperature at all the three stations. The nearest Global Network of Isotopes in Precipitation(GNIP) station(Zhangye), compared to the Meteoric Water Lines for this study, showed the obvious local evaporation effects with lower intercept and slope. Additionally, d-excess(δD- 8δ^(18)O) parameter in precipitation exhibited an anti-phase seasonal variability with the δ^(18)O. The 96-h back trajectories for each precipitation event using Hybrid Single Particle Lagrangian Integrated Trajectory(HYSPLIT) model indicated a dominant effect of westerly air masses in summer and the integrated influence of westerly and polar air masses in winter.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41501085,41461003)Postdoctoral Science Foundation of China(No.2013M532094)
文摘Hydrogen and oxygen isotopes in precipitation have been widely used as effective traces to investigate hydrological processes such as evaporation and atmospheric moisture source. This study analyzed δD and δ^(18)O of precipitation in continuous event-based samples at three stations of Pailugou Catchment from November 2012 to December 2013. The δ^(18)O and δD values ranged from-32.32‰ to +3.23‰ and from-254.46‰ to +12.11‰, respectively. Results show that the δ^(18)O displayed a distinct seasonal variation, with enriched values occurring in summer and relatively depleted values in winter, respectively. There was a statistically significant positive correlation between the δ^(18)O and δD values and local surface air temperature at all the three stations. The nearest Global Network of Isotopes in Precipitation(GNIP) station(Zhangye), compared to the Meteoric Water Lines for this study, showed the obvious local evaporation effects with lower intercept and slope. Additionally, d-excess(δD- 8δ^(18)O) parameter in precipitation exhibited an anti-phase seasonal variability with the δ^(18)O. The 96-h back trajectories for each precipitation event using Hybrid Single Particle Lagrangian Integrated Trajectory(HYSPLIT) model indicated a dominant effect of westerly air masses in summer and the integrated influence of westerly and polar air masses in winter.